File size: 5,929 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Speech processor class for M-CTC-T
"""
import warnings
from contextlib import contextmanager

from ....processing_utils import ProcessorMixin


class MCTCTProcessor(ProcessorMixin):
    r"""
    Constructs a MCTCT processor which wraps a MCTCT feature extractor and a MCTCT tokenizer into a single processor.

    [`MCTCTProcessor`] offers all the functionalities of [`MCTCTFeatureExtractor`] and [`AutoTokenizer`]. See the
    [`~MCTCTProcessor.__call__`] and [`~MCTCTProcessor.decode`] for more information.

    Args:
        feature_extractor (`MCTCTFeatureExtractor`):
            An instance of [`MCTCTFeatureExtractor`]. The feature extractor is a required input.
        tokenizer (`AutoTokenizer`):
            An instance of [`AutoTokenizer`]. The tokenizer is a required input.
    """
    feature_extractor_class = "MCTCTFeatureExtractor"
    tokenizer_class = "AutoTokenizer"

    def __init__(self, feature_extractor, tokenizer):
        super().__init__(feature_extractor, tokenizer)
        self.current_processor = self.feature_extractor
        self._in_target_context_manager = False

    def __call__(self, *args, **kwargs):
        """
        When used in normal mode, this method forwards all its arguments to MCTCTFeatureExtractor's
        [`~MCTCTFeatureExtractor.__call__`] and returns its output. If used in the context
        [`~MCTCTProcessor.as_target_processor`] this method forwards all its arguments to AutoTokenizer's
        [`~AutoTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more information.
        """
        # For backward compatibility
        if self._in_target_context_manager:
            return self.current_processor(*args, **kwargs)

        if "raw_speech" in kwargs:
            warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.")
            audio = kwargs.pop("raw_speech")
        else:
            audio = kwargs.pop("audio", None)
        sampling_rate = kwargs.pop("sampling_rate", None)
        text = kwargs.pop("text", None)
        if len(args) > 0:
            audio = args[0]
            args = args[1:]

        if audio is None and text is None:
            raise ValueError("You need to specify either an `audio` or `text` input to process.")

        if audio is not None:
            inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
        if text is not None:
            encodings = self.tokenizer(text, **kwargs)

        if text is None:
            return inputs
        elif audio is None:
            return encodings
        else:
            inputs["labels"] = encodings["input_ids"]
            return inputs

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to AutoTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer
        to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def pad(self, *args, **kwargs):
        """
        When used in normal mode, this method forwards all its arguments to MCTCTFeatureExtractor's
        [`~MCTCTFeatureExtractor.pad`] and returns its output. If used in the context
        [`~MCTCTProcessor.as_target_processor`] this method forwards all its arguments to PreTrainedTokenizer's
        [`~PreTrainedTokenizer.pad`]. Please refer to the docstring of the above two methods for more information.
        """
        # For backward compatibility
        if self._in_target_context_manager:
            return self.current_processor.pad(*args, **kwargs)

        input_features = kwargs.pop("input_features", None)
        labels = kwargs.pop("labels", None)
        if len(args) > 0:
            input_features = args[0]
            args = args[1:]

        if input_features is not None:
            input_features = self.feature_extractor.pad(input_features, *args, **kwargs)
        if labels is not None:
            labels = self.tokenizer.pad(labels, **kwargs)

        if labels is None:
            return input_features
        elif input_features is None:
            return labels
        else:
            input_features["labels"] = labels["input_ids"]
            return input_features

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to AutoTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the
        docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    @contextmanager
    def as_target_processor(self):
        """
        Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning MCTCT.
        """
        warnings.warn(
            "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
            "labels by using the argument `text` of the regular `__call__` method (either in the same call as "
            "your audio inputs, or in a separate call."
        )
        self._in_target_context_manager = True
        self.current_processor = self.tokenizer
        yield
        self.current_processor = self.feature_extractor
        self._in_target_context_manager = False