File size: 37,764 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
# coding=utf-8
# Copyright 2022 The OpenBMB Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch CPMAnt"""


import math
from typing import List, Optional, Tuple, Union

import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss

from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_cpmant import CpmAntConfig


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "openbmb/cpm-ant-10b"
_CONFIG_FOR_DOC = "CpmAntConfig"

CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "openbmb/cpm-ant-10b",
    # See all CPMAnt models at https://huggingface.co/models?filter=cpmant
]


class CpmAntLayerNorm(nn.Module):
    """
    We use Root Mean Square (RMS) Layer Normalization, please see https://arxiv.org/abs/1910.07467 for details."
    """

    def __init__(self, config: CpmAntConfig):
        super().__init__()

        self.eps = config.eps
        self.dim_norm = config.hidden_size
        self.weight = nn.Parameter(torch.empty(config.hidden_size))

    def forward(self, hidden_states: torch.Tensor):
        """
        Args:
            hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`)
        """
        if hidden_states.size(-1) != self.dim_norm:
            raise AssertionError("hidden_states.size(-1) != self.dim_norm")
        old_dtype = hidden_states.dtype
        variance = hidden_states.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
        hidden_states = (hidden_states * torch.rsqrt(variance + self.eps)).to(old_dtype) * self.weight
        return hidden_states


class CpmAntAttention(nn.Module):
    def __init__(self, config: CpmAntConfig):
        super().__init__()
        self.dim_model = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.dim_head = config.dim_head

        self.project_q = nn.Linear(self.dim_model, self.num_heads * self.dim_head, bias=False)
        self.project_k = nn.Linear(self.dim_model, self.num_heads * self.dim_head, bias=False)
        self.project_v = nn.Linear(self.dim_model, self.num_heads * self.dim_head, bias=False)

        self.attention_out = nn.Linear(self.num_heads * self.dim_head, self.dim_model, bias=False)

        self.softmax = torch.nn.Softmax(dim=-1)

        if config.dropout_p is not None:
            self.dropout = torch.nn.Dropout(p=config.dropout_p)
        else:
            self.dropout = None

    def forward(
        self,
        hidden_q: torch.Tensor,
        hidden_kv: torch.Tensor,
        attention_mask: torch.BoolTensor,
        position_bias: torch.Tensor,
        output_attentions: Optional[bool] = False,
        past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        use_cache: Optional[bool] = None,
    ):
        """
        Args:
            hidden_q (`torch.Tensor`):
                Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences.
            hidden_kv (`torch.Tensor` of shape `(batch, len_k, dim_model)`)):
                Tensor *key_value* and *query* of shape `(batch, len_k, dim_model)`
            attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
                Avoid invalid areas to participate in the calculation of self-attention.
            position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
                Provide positional information to self-attention block.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers.
            past_key_values (`Tuple[torch.Tensor, torch.Tensor]`, *optional*):
                Cached past key and value projection states.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
        """
        batch_size = hidden_q.size(0)
        len_q = hidden_q.size(1)
        len_k = hidden_kv.size(1)

        query = self.project_q(hidden_q)
        key = self.project_k(hidden_kv)
        value = self.project_v(hidden_kv)

        query = query.view(batch_size, len_q, self.num_heads, self.dim_head).permute(0, 2, 1, 3)
        key = key.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3)
        value = value.view(batch_size, len_k, self.num_heads, self.dim_head).permute(0, 2, 1, 3)

        if past_key_values is not None:
            key = torch.cat([past_key_values[0], key], dim=-2)
            value = torch.cat([past_key_values[1], value], dim=-2)
            len_k = key.size(-2)

        # (batch_size, num_heads, len_q, dim_head) @ (batch_size, num_heads, dim_head, len_k) -> (batch_size, num_heads, len_q, len_k)
        score = torch.matmul(query, key.transpose(-1, -2)) / math.sqrt(self.dim_head)
        score = score + position_bias

        score = torch.masked_fill(
            score,
            attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False),
            torch.scalar_tensor(float("-inf"), device=score.device, dtype=score.dtype),
        )
        score = self.softmax(score)

        score = torch.masked_fill(
            score,
            attention_mask.view(batch_size, 1, len_q, len_k) == torch.tensor(False),
            torch.scalar_tensor(0, device=score.device, dtype=score.dtype),
        )
        if output_attentions:
            attn_weights = score
        else:
            attn_weights = None

        if self.dropout is not None:
            score = self.dropout(score)

        # (batch_size, num_heads, len_q, len_k) @ (batch_size, num_heads, len_k, dim_head) -> (batch_size, num_heads, len_q, dim_head)
        score = torch.matmul(score, value)

        score = score.view(batch_size, self.num_heads, len_q, self.dim_head).permute(0, 2, 1, 3)
        score = score.contiguous().view(batch_size, len_q, self.num_heads * self.dim_head)

        score = self.attention_out(score)

        past_key_values = None
        if use_cache:
            past_key_values = (key, value)

        return score, attn_weights, past_key_values


class CpmAntSelfAttentionBlock(nn.Module):
    def __init__(self, config: CpmAntConfig):
        super().__init__()
        self.layernorm_before_attention = CpmAntLayerNorm(config)
        self.self_attention = CpmAntAttention(config)
        if config.dropout_p:
            self.dropout = torch.nn.Dropout(config.dropout_p)
        else:
            self.dropout = None

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        position_bias: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = False,
        past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        use_cache: Optional[bool] = None,
    ):
        """
        Args:
            hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`):
                Input of transformer block(self-attention block). It can be the raw embedding of a batch of sequences.
            attention_mask (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
                Avoid invalid areas to participate in the calculation of self-attention.
            position_bias (`torch.Tensor` of shape `(batch, len_seq, len_seq)`):
                Provide positional information to self-attention block.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers.
            past_key_values (`Tuple(torch.FloatTensor)`, *optional*):
                Cached past key and value projection states.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
        """
        outputs = self.layernorm_before_attention(hidden_states)
        outputs = self.self_attention(
            outputs, outputs, attention_mask, position_bias, output_attentions, past_key_values, use_cache
        )

        outputs, attn_weights, current_key_value = outputs

        if self.dropout is not None:
            outputs = self.dropout(outputs)
        hidden_states = hidden_states + outputs

        return hidden_states, attn_weights, current_key_value


class CpmAntDenseGatedACT(nn.Module):
    def __init__(self, config: CpmAntConfig):
        super().__init__()
        self.w_0 = nn.Linear(config.hidden_size, config.dim_ff, bias=False)
        self.w_1 = nn.Linear(config.hidden_size, config.dim_ff, bias=False)
        self.act = torch.nn.GELU()

    def forward(self, hidden_states: torch.Tensor):
        """Transform an input tensor from one feature space to another via a nonlinear operation

        Args:
            hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`)
        """
        gate_score = self.act(self.w_0(hidden_states))
        hidden_states = self.w_1(hidden_states)

        hidden_states = gate_score * hidden_states
        return hidden_states


class CpmAntFeedForward(nn.Module):
    def __init__(self, config: CpmAntConfig):
        super().__init__()
        self.w_in = CpmAntDenseGatedACT(config)
        if config.dropout_p is not None:
            self.dropout = torch.nn.Dropout(config.dropout_p)
        else:
            self.dropout = None

        self.w_out = nn.Linear(config.dim_ff, config.hidden_size, bias=False)

    def forward(self, hidden_states: torch.Tensor):
        """
        Args:
            hidden_states (`torch.Tensor` of shape `(batch, seq_len, dim_in)`)
        """
        hidden_states = self.w_in(hidden_states)

        if self.dropout is not None:
            hidden_states = self.dropout(hidden_states)

        hidden_states = self.w_out(hidden_states)

        return hidden_states


class CpmAntFFNBlock(nn.Module):
    def __init__(self, config: CpmAntConfig):
        super().__init__()
        self.layernorm_before_ffn = CpmAntLayerNorm(config)
        self.ffn = CpmAntFeedForward(config)
        if config.dropout_p:
            self.dropout = torch.nn.Dropout(config.dropout_p)
        else:
            self.dropout = None

    def forward(
        self,
        hidden_states: torch.Tensor,
    ):
        """
        Args:
            hidden_states (`torch.Tensor` of shape `(batch, len_seq, dim_model)`):
                Hidden states before feed forward layer.
        """
        ln_outputs = self.layernorm_before_ffn(hidden_states)
        outputs = self.ffn(ln_outputs)
        if self.dropout is not None:
            outputs = self.dropout(outputs)
        hidden_states = hidden_states + outputs
        return hidden_states


class CpmAntTransformerBlock(nn.Module):
    def __init__(self, config: CpmAntConfig):
        super().__init__()
        self.self_att = CpmAntSelfAttentionBlock(config)
        self.ffn = CpmAntFFNBlock(config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        position_bias: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = False,
        past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        use_cache: Optional[bool] = None,
    ):
        """
        Args:
            hidden_states (`torch.Tensor`):
                Input to the layer of shape `(batch, seq_len, dim_model)`
            attention_mask (`torch.Tensor`):
                Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)`
            position_bias (`torch.Tensor`):
                Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)`
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers.
            past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*):
                Cached past key and value projection states
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
        """
        hidden_states = self.self_att(
            hidden_states,
            attention_mask=attention_mask,
            position_bias=position_bias,
            output_attentions=output_attentions,
            past_key_values=past_key_values,
            use_cache=use_cache,
        )

        hidden_states, attn_weights, current_key_value = hidden_states

        hidden_states = self.ffn(hidden_states)

        return hidden_states, attn_weights, current_key_value


class CpmAntEncoder(nn.Module):
    def __init__(self, config: CpmAntConfig):
        super().__init__()
        self.num_layers = config.num_hidden_layers
        self.layers = nn.ModuleList([CpmAntTransformerBlock(config) for ith in range(self.num_layers)])

        self.output_layernorm = CpmAntLayerNorm(config)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: torch.Tensor,
        position_bias: torch.Tensor,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        past_key_values: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
        use_cache: Optional[bool] = None,
    ):
        """
        Args:
            hidden_states (`torch.Tensor`):
                Input to the layer of shape `(batch, seq_len, dim_model)`
            attention_mask (`torch.Tensor`):
                Avoid invalid areas to participate in the calculation of shape `(batch, seq_len, seq_len)`
            position_bias (`torch.Tensor`):
                Provides position information to attention mechanism of shape `(num_heads, seq_len, seq_len)`
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers.
            past_key_values (`Tuple[torch.Tensor, torch.Tensor])`, *optional*):
                Cached past key and value projection states
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
        """
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        current_key_values = () if use_cache else None

        for i, layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            layer_outputs = layer(
                hidden_states,
                attention_mask,
                position_bias,
                output_attentions=output_attentions,
                past_key_values=past_key_values[i] if past_key_values else None,
                use_cache=use_cache,
            )
            hidden_states, attn_weights, current_key_value = layer_outputs
            if output_attentions:
                all_self_attns += (attn_weights,)
            if current_key_value is not None:
                current_key_values = current_key_values + (current_key_value,)

        hidden_states = self.output_layernorm(hidden_states)

        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        return hidden_states, current_key_values, all_hidden_states, all_self_attns


# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->CPMAnt
class CpmAntIntermediate(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
        if isinstance(config.hidden_act, str):
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class CpmAntSegmentPositionEmbedding(nn.Module):
    def __init__(self, config: CpmAntConfig):
        super().__init__()

        self.num_heads = config.num_attention_heads
        self.num_buckets = config.position_bias_num_buckets
        self.max_distance = config.position_bias_max_distance
        self.num_segments = config.segment_types

        self.relative_attention_bias = nn.Parameter(
            torch.empty(
                config.segment_types * config.segment_types + config.position_bias_num_buckets,
                config.num_attention_heads,
            )
        )

    def forward(
        self,
        key_pos: torch.Tensor,
        query_pos: torch.Tensor,
        key_segment: torch.Tensor,
        query_segment: torch.Tensor,
    ):
        with torch.no_grad():
            batch = key_pos.size(0)
            keylen = key_pos.size(1)
            querylen = query_pos.size(1)

            if key_pos.size(0) != query_pos.size(0):
                raise AssertionError(
                    f"key_pos.size(0) should be equal to query_pos.size(0), but got {key_pos.size(0)} and {query_pos.size(0)}!"
                )
            if keylen != key_segment.size(1) or querylen != query_segment.size(1):
                raise AssertionError(
                    f"keylen should be equal to key_segment.size(1), but got {keylen} and {key_segment.size(1)}!"
                )
            if querylen != query_segment.size(1):
                raise AssertionError(
                    f"querylen should be equal to query_segment.size(1), but got {querylen} and {query_segment.szie(1)}!"
                )

            key_pos = key_pos.view(batch, -1, keylen)
            query_pos = query_pos.view(batch, querylen, -1)
            key_segment = key_segment.view(batch, -1, keylen)
            query_segment = query_segment.view(batch, querylen, -1)

            relative_position_bucket = self._segment_relative_position_bucket(query_segment, key_segment)
            relative_position_bucket = relative_position_bucket + self.num_buckets

            # (batch, len_q, len_k)
            absolute_position_bucket = self._position_bucket(
                torch.arange(keylen, dtype=torch.int32, device=relative_position_bucket.device)[None, :]
                - torch.arange(querylen, dtype=torch.int32, device=relative_position_bucket.device)[:, None],
                num_buckets=self.num_buckets,
                max_distance=self.max_distance,
            )
            relative_position_bucket = torch.where(
                (key_segment == query_segment),
                absolute_position_bucket[None, :, :],
                relative_position_bucket,
            )

        # (batch, len_q, len_k, num_heads)
        embeds = F.embedding(relative_position_bucket, self.relative_attention_bias)
        # (batch, num_heads, len_q, len_k)
        embeds = embeds.permute(0, 3, 1, 2).contiguous()
        return embeds

    def _segment_relative_position_bucket(self, query_segment, key_segment):
        return query_segment * self.num_segments + key_segment

    def _position_bucket(self, relative_position, num_buckets=32, max_distance=128):
        relative_buckets = 0
        # always bidirectional in CPMAnt
        num_buckets //= 2
        relative_buckets = (relative_position > 0).to(torch.int32) * num_buckets
        relative_position = torch.abs(relative_position)
        max_exact = num_buckets // 2
        is_small = relative_position < max_exact
        relative_postion_if_large = max_exact + (
            torch.log(relative_position.float() / max_exact)
            / math.log(max_distance / max_exact)
            * (num_buckets - max_exact)
        ).to(torch.int32)
        relative_postion_if_large = torch.min(
            relative_postion_if_large,
            torch.full_like(relative_postion_if_large, num_buckets - 1),
        )
        relative_buckets += torch.where(is_small, relative_position.to(torch.int32), relative_postion_if_large)
        return relative_buckets


# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->CPMAnt
class CpmAntOutput(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
        self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class CpmAntPreTrainedModel(PreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = CpmAntConfig
    base_model_prefix = "cpmant"
    supports_gradient_checkpointing = True

    def _init_weights(self, module):
        """Initialize the weights"""
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=self.config.init_std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.init_std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, CpmAntLayerNorm):
            module.weight.data.fill_(1.0)
        elif isinstance(module, CpmAntSegmentPositionEmbedding):
            module.relative_attention_bias.data.normal_(mean=0.0, std=self.config.init_std)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, CpmAntEncoder):
            module.gradient_checkpointing = value


CPMANT_START_DOCSTRING = r"""
    This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
    it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
    behavior.

    Parameters
        config ([`~CpmAntConfig`]): Model configuration class with all the parameters of the
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""

CPMANT_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using [`CPMAntTokenizer`]. See [`PreTrainedTokenizer.encode`] and
            [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
            blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
        use_cache (`bool`, *optional*):
            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
            `past_key_values`).
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@add_start_docstrings(
    "The bare CPMAnt Model outputting raw hidden-states without any specific head on top.",
    CPMANT_START_DOCSTRING,
)
class CpmAntModel(CpmAntPreTrainedModel):
    def __init__(self, config: CpmAntConfig):
        super().__init__(config)
        self.encoder = CpmAntEncoder(config)
        self.segment_embedding = nn.Embedding(config.segment_types, config.hidden_size)
        self.input_embedding = nn.Embedding(
            config.vocab_size + config.prompt_types * config.prompt_length, config.hidden_size
        )
        self.position_bias = CpmAntSegmentPositionEmbedding(config)
        self.prompt_length = config.prompt_length
        self.vocab_size = config.vocab_size

        self.post_init()

    def get_input_embeddings(self):
        return self.input_embedding

    def set_input_embeddings(self, embeddings, **kwargs):
        self.input_embedding = embeddings

    def _prepare_attention_mask(self, input_ids, span, context, length):
        batch = input_ids.size(0)
        seqlen = input_ids.size(1)
        device = input_ids.device
        directional_mask_2d = torch.arange(seqlen, device=device) <= torch.arange(seqlen, device=device).view(-1, 1)
        attention_mask = context[:, None, :] | (
            context[:, :, None].logical_not() & directional_mask_2d.view(1, seqlen, seqlen)
        )
        attention_mask = attention_mask & (span[:, None, :] == span[:, :, None])
        # mask for left padding
        mask_1d = (
            torch.tensor(list(range(seqlen - self.prompt_length))[::-1], device=device)[None, :].repeat(batch, 1)
            < length[:, None]
        )
        mask_1d = torch.cat((torch.ones(batch, self.prompt_length, device=device).bool(), mask_1d), dim=1)
        attention_mask = mask_1d.view(batch, seqlen, 1) & mask_1d.view(batch, 1, seqlen) & attention_mask
        return attention_mask

    @add_start_docstrings_to_model_forward(CPMANT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=BaseModelOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        use_cache: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,
    ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        # add prompts ahead
        if input_ids.dtype != torch.int32:
            input_ids = input_ids.to(torch.int32)
        dtype, device = input_ids.dtype, input_ids.device
        segment = torch.where(input_ids != 0, 2, 0).to(dtype=dtype, device=device)
        length = (segment != 0).sum(-1).to(dtype=dtype, device=device)
        input_ids = torch.cat(
            (
                torch.arange(
                    self.prompt_length * 2 + self.vocab_size,
                    self.prompt_length * 3 + self.vocab_size,
                    dtype=dtype,
                    device=device,
                ).repeat(input_ids.size(0), 1),
                input_ids,
            ),
            dim=1,
        )
        batch, seq_length = input_ids.size()
        segment = torch.cat((torch.zeros(batch, self.prompt_length, dtype=dtype, device=device), segment), dim=1)
        context = torch.full((batch, seq_length), 1, dtype=dtype, device=device)
        position = torch.arange(seq_length, dtype=dtype, device=device).repeat(batch, 1)
        span = torch.full((batch, seq_length), 0, dtype=dtype, device=device)

        if past_key_values is None:
            past_length = 0
            past_key_values = tuple([None] * self.encoder.num_layers)
            input_ids = input_ids.contiguous()
            hidden_states = self.input_embedding(input_ids)
            segment_states = self.segment_embedding(segment)
            hidden_states = hidden_states + segment_states
        else:
            past_length = past_key_values[0][0].size(-2)
            segment_states = self.segment_embedding(segment)
            hidden_states = self.input_embedding(input_ids) + segment_states[:, -1:, :]

        attention_mask = self._prepare_attention_mask(input_ids, span, context, length)
        position_bias = self.position_bias(position, position, segment, segment)

        attention_mask = attention_mask[:, past_length:, :]
        position_bias = position_bias[:, :, past_length:, :]
        hidden_states = hidden_states[:, past_length:, :]

        hidden_states, present_key_values, all_hidden_states, all_attentions = self.encoder(
            hidden_states,
            attention_mask,
            position_bias,
            output_attentions,
            output_hidden_states,
            past_key_values,
            use_cache,
        )

        if past_length == 0:
            hidden_states = hidden_states[:, self.prompt_length :, :]
            # drop the prompt
            if all_attentions is not None:
                new_attentions = ()
                for attention in all_attentions:
                    new_attentions += (attention[:, :, self.prompt_length :, self.prompt_length :],)
                all_attentions = new_attentions
            if all_hidden_states is not None:
                new_hidden_states = ()
                for hidden_state in all_hidden_states:
                    new_hidden_states += (hidden_state[:, self.prompt_length :, :],)
                all_hidden_states = new_hidden_states

        if not return_dict:
            return tuple(
                v for v in [hidden_states, present_key_values, all_hidden_states, all_attentions] if v is not None
            )

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=present_key_values,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
        )


@add_start_docstrings(
    """
    The CPMAnt Model with a language modeling head on top (linear layer with weights tied to the input embeddings).
    """,
    CPMANT_START_DOCSTRING,
)
class CpmAntForCausalLM(CpmAntPreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config: CpmAntConfig):
        super().__init__(config)
        self.cpmant = CpmAntModel(config)

        # lm_head.weight is tied to cpmant.input_embedding.weight
        self.lm_head = nn.Linear(
            config.hidden_size, config.vocab_size + config.prompt_types * config.prompt_length, bias=False
        )
        self.post_init()

    @add_start_docstrings_to_model_forward(CPMANT_INPUTS_DOCSTRING)
    @add_code_sample_docstrings(
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=CausalLMOutputWithPast,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        labels: Optional[torch.Tensor] = None,
        return_dict: Optional[bool] = None,
        attention_mask: Optional[torch.Tensor] = None,  # dummy parameter for text-generation pipeline
        **kwargs,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            input_ids (`torch.Tensor` of shape `(batch_size, seq_len)`):
                Indices of input sequence tokens in the vocabulary.

                Indices can be obtained using [`CPMAntTokenizer`]. See [`PreTrainedTokenizer.encode`] and
                [`PreTrainedTokenizer.__call__`] for details.

                [What are input IDs?](../glossary#input-ids)
            past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
                Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
                cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
            use_cache (`bool`, *optional*):
                If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
                (see `past_key_values`).
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers.
            labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
            attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                CPMAnt will process attention mask automatically, this parameter is a dummy parameter for
                text-generation pipeline.

        Example:

        Text Generation with CpmAntForCausalLM.
        ```python
        >>> from transformers import CPMAntTokenizer, CpmAntForCausalLM

        >>> texts = "今天天气不错,"
        >>> model = CpmAntForCausalLM.from_pretrained("openbmb/cpm-ant-10b")
        >>> tokenizer = CPMAntTokenizer.from_pretrained("openbmb/cpm-ant-10b")
        >>> input_ids = tokenizer(texts, return_tensors="pt")
        >>> outputs = model.generate(**input_ids)
        >>> output_texts = tokenizer.batch_decode(outputs)
        >>> print(output_texts)
        ['今天天气不错,阳光明媚,我和妈妈一起去超市买东西。\n在超市里,我看到了一个很好玩的玩具,它的名字叫“机器人”。它有一个圆圆的脑袋,两只圆圆的眼睛,还有一个圆圆的']
        ```
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        model_output = self.cpmant(
            input_ids, output_attentions, output_hidden_states, past_key_values, use_cache, return_dict
        )
        hidden_states = model_output.last_hidden_state if return_dict else model_output[0]

        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            loss_func = CrossEntropyLoss()
            loss = loss_func(logits.view(-1, logits.size(-1)), labels.view(-1))

        if not return_dict:
            output = (logits,) + model_output[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=model_output.past_key_values,
            hidden_states=model_output.hidden_states,
            attentions=model_output.attentions,
        )

    def get_input_embeddings(self):
        return self.cpmant.input_embedding

    def set_input_embeddings(self, embeddings):
        self.cpmant.input_embedding = embeddings

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def prepare_inputs_for_generation(self, input_ids, **kwargs):
        input_ids = input_ids.int()
        # save the memory usage of dummy attention mask
        if "attention_mask" in kwargs:
            kwargs["attention_mask"] = torch.zeros(1, 1)

        return {
            "input_ids": input_ids,
            "use_cache": kwargs["use_cache"],
            "past_key_values": kwargs.get("past_key_values", None),
        }

    def _reorder_cache(self, past_key_values, beam_idx):
        past_key_values = [list(each) if each is not None else each for each in past_key_values]
        for key_value_layer in past_key_values:
            key_value_layer[0] = key_value_layer[0][beam_idx]
            key_value_layer[1] = key_value_layer[1][beam_idx]
        return past_key_values