File size: 65,592 Bytes
4c65bff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
# coding=utf-8
# Copyright 2023 The Salesforce Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TensorFlow BLIP model."""

from __future__ import annotations

import warnings
from dataclasses import dataclass
from typing import Any, Optional, Tuple, Union

import tensorflow as tf

from ...modeling_tf_outputs import TFBaseModelOutput, TFBaseModelOutputWithPooling
from ...modeling_tf_utils import (
    TFPreTrainedModel,
    get_initializer,
    get_tf_activation,
    keras_serializable,
    shape_list,
    unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, stable_softmax
from ...utils import (
    ModelOutput,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    logging,
    replace_return_docstrings,
)
from .configuration_blip import BlipConfig, BlipTextConfig, BlipVisionConfig
from .modeling_tf_blip_text import BLIP_TEXT_INPUTS_DOCSTRING, TFBlipTextLMHeadModel, TFBlipTextModel


logger = logging.get_logger(__name__)

_CHECKPOINT_FOR_DOC = "Salesforce/blip-vqa-base"

TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "Salesforce/blip-vqa-base",
    "Salesforce/blip-vqa-capfilt-large",
    "Salesforce/blip-image-captioning-base",
    "Salesforce/blip-image-captioning-large",
    "Salesforce/blip-itm-base-coco",
    "Salesforce/blip-itm-large-coco",
    "Salesforce/blip-itm-base-flickr",
    "Salesforce/blip-itm-large-flickr",
    # See all BLIP models at https://huggingface.co/models?filter=blip
]


# Copied from transformers.models.clip.modeling_tf_clip.contrastive_loss
def contrastive_loss(logits: tf.Tensor) -> tf.Tensor:
    return tf.math.reduce_mean(
        tf.keras.metrics.sparse_categorical_crossentropy(
            y_true=tf.range(shape_list(logits)[0]), y_pred=logits, from_logits=True
        )
    )


# Copied from transformers.models.clip.modeling_tf_clip.clip_loss with clip->blip
def blip_loss(similarity: tf.Tensor) -> tf.Tensor:
    caption_loss = contrastive_loss(similarity)
    image_loss = contrastive_loss(tf.transpose(similarity))
    return (caption_loss + image_loss) / 2.0


@dataclass
class TFBlipForConditionalGenerationModelOutput(ModelOutput):
    """
    Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
    last hidden states. This class also adds the loss term from the text decoder.

    Args:
        loss (`tf.Tensor`, *optional*, returned when `labels` is provided, `tf.Tensor` of shape `(1,)`):
            Languge modeling loss from the text decoder.
        logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`, *optional*):
            Prediction scores of the language modeling head of the text decoder model.
        image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)`, *optional*):
            The image embeddings obtained after applying the Vision Transformer model to the input image.
        last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True`):
            Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
            the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed):
            Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.`
    """

    loss: Tuple[tf.Tensor] | None = None
    logits: Tuple[tf.Tensor] | None = None
    image_embeds: tf.Tensor | None = None
    last_hidden_state: tf.Tensor = None
    hidden_states: Tuple[tf.Tensor] | None = None
    attentions: Tuple[tf.Tensor] | None = None

    @property
    def decoder_logits(self):
        warnings.warn(
            "`decoder_logits` attribute is deprecated and will be removed in version 5 of Transformers."
            " Please use the `logits` attribute to retrieve the final output instead.",
            FutureWarning,
        )
        return self.logits


@dataclass
class TFBlipTextVisionModelOutput(ModelOutput):
    """
    Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
    last hidden states. This class also adds the loss term from the text decoder.

    Args:
        loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Languge modeling loss from the text decoder.
        image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
            The image embeddings obtained by applying the projection layer to the pooler_output.
        last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
            the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
    """

    loss: tf.Tensor | None = None
    image_embeds: tf.Tensor | None = None
    last_hidden_state: tf.Tensor = None
    hidden_states: Tuple[tf.Tensor] | None = None
    attentions: Tuple[tf.Tensor] | None = None


@dataclass
class TFBlipImageTextMatchingModelOutput(ModelOutput):
    """
    Adapted from the base class for vision model's outputs that also contains image embeddings of the pooling of the
    last hidden states. This class also adds the loss term from the text decoder as well as the image-text similarity
    scores.

    Args:
        itm_score (`tf.Tensor`):
            The image-text similarity scores.
        loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Languge modeling loss from the text decoder.
        image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
            The image embeddings obtained by applying the projection layer to the pooler_output.
        last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for
            the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        vision_pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`, *optional*):
            Last layer hidden-state of the vision of the vision-only branch of the model.
        attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
            Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        question_embeds (`tf.Tensor`):
            The question embeddings obtained by the text projection layer.
    """

    itm_score: tf.Tensor | None = None
    loss: tf.Tensor | None = None
    image_embeds: tf.Tensor | None = None
    last_hidden_state: tf.Tensor = None
    hidden_states: Tuple[tf.Tensor] | None = None
    vision_pooler_output: tf.Tensor | None = None
    attentions: Tuple[tf.Tensor] | None = None
    question_embeds: Tuple[tf.Tensor] | None = None


@dataclass
class TFBlipOutput(ModelOutput):
    """
    Args:
        loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
            Contrastive loss for image-text similarity.
        logits_per_image:(`tf.Tensor` of shape `(image_batch_size, text_batch_size)`):
            The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
            similarity scores.
        logits_per_text:(`tf.Tensor` of shape `(text_batch_size, image_batch_size)`):
            The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
            similarity scores.
        text_embeds(`tf.Tensor` of shape `(batch_size, output_dim`):
            The text embeddings obtained by applying the projection layer to the pooled output of [`BlipTextModel`].
        image_embeds(`tf.Tensor` of shape `(batch_size, output_dim`):
            The image embeddings obtained by applying the projection layer to the pooled output of [`BlipVisionModel`].
        text_model_output(`BaseModelOutputWithPooling`):
            The output of the [`BlipTextModel`].
        vision_model_output(`BaseModelOutputWithPooling`):
            The output of the [`BlipVisionModel`].
    """

    loss: tf.Tensor | None = None
    logits_per_image: tf.Tensor = None
    logits_per_text: tf.Tensor = None
    text_embeds: tf.Tensor = None
    image_embeds: tf.Tensor = None
    text_model_output: TFBaseModelOutputWithPooling = None
    vision_model_output: TFBaseModelOutputWithPooling = None

    def to_tuple(self) -> Tuple[Any]:
        return tuple(
            self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
            for k in self.keys()
        )


class TFBlipVisionEmbeddings(tf.keras.layers.Layer):
    def __init__(self, config: BlipVisionConfig, **kwargs):
        super().__init__(**kwargs)
        self.config = config
        self.embed_dim = config.hidden_size
        self.image_size = config.image_size
        self.patch_size = config.patch_size

        self.patch_embedding = tf.keras.layers.Conv2D(
            filters=self.embed_dim,
            kernel_size=self.patch_size,
            strides=self.patch_size,
            kernel_initializer=get_initializer(self.config.initializer_range),
            data_format="channels_last",
            name="patch_embedding",
        )

        self.num_patches = (self.image_size // self.patch_size) ** 2
        self.num_positions = self.num_patches + 1

    def build(self, input_shape):
        self.class_embedding = self.add_weight(
            shape=(1, 1, self.embed_dim),
            initializer=get_initializer(self.config.initializer_range),
            trainable=True,
            name="class_embedding",
        )

        self.position_embedding = self.add_weight(
            shape=(1, self.num_positions, self.embed_dim),
            initializer=get_initializer(self.config.initializer_range),
            trainable=True,
            name="position_embedding",
        )
        super().build(input_shape)

    def call(self, pixel_values: tf.Tensor) -> tf.Tensor:
        # Input is channels-first, we transpose. PyTorch transposes after the conv because PyTorch
        # likes channels-first convs.
        batch_size = tf.shape(pixel_values)[0]
        pixel_values = tf.transpose(pixel_values, perm=(0, 2, 3, 1))
        patch_embeds = self.patch_embedding(pixel_values)
        patch_embeds = tf.reshape(patch_embeds, (batch_size, self.num_patches, -1))

        class_embeds = tf.broadcast_to(self.class_embedding, (batch_size, 1, self.embed_dim))
        embeddings = tf.concat([class_embeds, patch_embeds], axis=1)
        embeddings = embeddings + self.position_embedding[:, : tf.shape(embeddings)[1], :]
        return embeddings


# Copied from transformers.models.clip.modeling_tf_clip.TFCLIPTextEmbeddings with CLIP->Blip
class TFBlipTextEmbeddings(tf.keras.layers.Layer):
    def __init__(self, config: BlipTextConfig, **kwargs):
        super().__init__(**kwargs)

        self.embed_dim = config.hidden_size

        self.config = config

    def build(self, input_shape: tf.TensorShape = None):
        with tf.name_scope("token_embedding"):
            self.weight = self.add_weight(
                shape=(self.config.vocab_size, self.embed_dim),
                initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range),
                trainable=True,
                name="weight",
            )

        with tf.name_scope("position_embedding"):
            self.position_embedding = self.add_weight(
                shape=(self.config.max_position_embeddings, self.embed_dim),
                initializer=get_initializer(self.config.initializer_factor * self.config.initializer_range),
                trainable=True,
                name="embeddings",
            )

        super().build(input_shape)

    def call(
        self,
        input_ids: tf.Tensor = None,
        position_ids: tf.Tensor = None,
        inputs_embeds: tf.Tensor = None,
    ) -> tf.Tensor:
        """
        Applies embedding based on inputs tensor.

        Returns:
            final_embeddings (`tf.Tensor`): output embedding tensor.
        """
        if input_ids is None and inputs_embeds is None:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if inputs_embeds is None:
            check_embeddings_within_bounds(input_ids, self.config.vocab_size)
            inputs_embeds = tf.gather(params=self.weight, indices=input_ids)

        input_shape = shape_list(inputs_embeds)[:-1]

        if position_ids is None:
            position_ids = tf.expand_dims(tf.range(start=0, limit=input_shape[-1]), axis=0)

        position_embeds = tf.gather(params=self.position_embedding, indices=position_ids)
        position_embeds = tf.tile(input=position_embeds, multiples=(input_shape[0], 1, 1))
        final_embeddings = inputs_embeds + position_embeds

        return final_embeddings


class TFBlipAttention(tf.keras.layers.Layer):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config, **kwargs):
        super().__init__(**kwargs)
        self.config = config
        self.embed_dim = config.hidden_size
        self.num_heads = config.num_attention_heads
        self.head_dim = self.embed_dim // self.num_heads
        if self.head_dim * self.num_heads != self.embed_dim:
            raise ValueError(
                f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
                f" {self.num_heads})."
            )
        self.scale = self.head_dim**-0.5
        self.dropout = tf.keras.layers.Dropout(config.attention_dropout, name="dropout")

        self.qkv = tf.keras.layers.Dense(
            3 * self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="qkv"
        )

        self.projection = tf.keras.layers.Dense(
            self.embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="projection"
        )

    def call(
        self,
        hidden_states: tf.Tensor,
        head_mask: tf.Tensor | None = None,
        output_attentions: Optional[bool] = False,
        training: Optional[bool] = None,
    ) -> Tuple[tf.Tensor, tf.Tensor | None, Tuple[tf.Tensor] | None]:
        """Input shape: Batch x Time x Channel"""

        bsz, tgt_len, embed_dim = shape_list(hidden_states)

        mixed_qkv = self.qkv(hidden_states)
        mixed_qkv = tf.reshape(mixed_qkv, (bsz, tgt_len, 3, self.num_heads, self.head_dim))
        mixed_qkv = tf.transpose(mixed_qkv, perm=(2, 0, 3, 1, 4))

        query_states, key_states, value_states = mixed_qkv[0], mixed_qkv[1], mixed_qkv[2]

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = query_states @ tf.transpose(key_states, (0, 1, 3, 2))

        attention_scores = attention_scores * self.scale

        # Normalize the attention scores to probabilities.
        attention_probs = stable_softmax(attention_scores, axis=-1)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs, training=training)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = tf.transpose(attention_probs @ value_states, perm=(0, 2, 1, 3))

        new_context_layer_shape = shape_list(context_layer)[:-2] + [self.embed_dim]
        context_layer = tf.reshape(context_layer, new_context_layer_shape)

        output = self.projection(context_layer)

        outputs = (output, attention_probs) if output_attentions else (output, None)

        return outputs


class TFBlipMLP(tf.keras.layers.Layer):
    def __init__(self, config: BlipConfig, **kwargs):
        super().__init__(**kwargs)

        self.activation_fn = get_tf_activation(config.hidden_act)

        in_proj_std = (config.hidden_size**-0.5) * ((2 * config.num_hidden_layers) ** -0.5)
        fc_std = (2 * config.hidden_size) ** -0.5

        self.fc1 = tf.keras.layers.Dense(
            units=config.intermediate_size, kernel_initializer=get_initializer(fc_std), name="fc1"
        )
        self.fc2 = tf.keras.layers.Dense(
            units=config.hidden_size, kernel_initializer=get_initializer(in_proj_std), name="fc2"
        )

    def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
        hidden_states = self.fc1(inputs=hidden_states)
        hidden_states = self.activation_fn(hidden_states)
        hidden_states = self.fc2(inputs=hidden_states)
        return hidden_states


class TFBlipEncoderLayer(tf.keras.layers.Layer):
    def __init__(self, config: BlipConfig, **kwargs):
        super().__init__(**kwargs)
        self.embed_dim = config.hidden_size
        self.self_attn = TFBlipAttention(config, name="self_attn")
        self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1")
        self.mlp = TFBlipMLP(config, name="mlp")
        self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2")

    def call(
        self,
        hidden_states: tf.Tensor,
        attention_mask: tf.Tensor,
        output_attentions: Optional[bool] = False,
        training: Optional[bool] = None,
    ) -> Tuple[tf.Tensor]:
        """
        Args:
            hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
            attention_mask (`tf.Tensor`): attention mask of size
                `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
                `(config.encoder_attention_heads,)`.
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
        """
        residual = hidden_states

        hidden_states = self.layer_norm1(hidden_states)
        hidden_states, attn_weights = self.self_attn(
            hidden_states=hidden_states,
            head_mask=attention_mask,
            output_attentions=output_attentions,
            training=training,
        )
        hidden_states = hidden_states + residual
        residual = hidden_states
        hidden_states = self.layer_norm2(hidden_states)
        hidden_states = self.mlp(hidden_states)

        hidden_states = hidden_states + residual

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attn_weights,)

        return outputs


class TFBlipPreTrainedModel(TFPreTrainedModel):
    """
    An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
    models.
    """

    config_class = BlipConfig
    base_model_prefix = "blip"
    _keys_to_ignore_on_load_missing = [r"position_ids"]


BLIP_START_DOCSTRING = r"""
    This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
    library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
    etc.)

    This model is also a [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
    as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
    behavior.

    Parameters:
        config ([`BlipConfig`]): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the
            configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""

BLIP_VISION_INPUTS_DOCSTRING = r"""
    Args:
        pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
            [`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""

BLIP_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
            Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
            it.

            Indices can be obtained using [`AutoProcessor`]. See [`BlipProcessor.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

            - 1 for tokens that are **not masked**,
            - 0 for tokens that are **masked**.

            [What are attention masks?](../glossary#attention-mask)
        position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
            Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
            config.max_position_embeddings - 1]`.

            [What are position IDs?](../glossary#position-ids)
        pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
            Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
            [`BlipImageProcessor`]. See [`BlipImageProcessor.__call__`] for details.
        return_loss (`bool`, *optional*):
            Whether or not to return the contrastive loss.
        output_attentions (`bool`, *optional*):
            Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
            tensors for more detail.
        output_hidden_states (`bool`, *optional*):
            Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
            more detail.
        return_dict (`bool`, *optional*):
            Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""


@keras_serializable
class TFBlipEncoder(tf.keras.layers.Layer):
    config_class = BlipConfig
    """
    Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
    [`BlipEncoderLayer`].

    Args:
        config (`BlipConfig`):
            The corresponding vision configuration for the `BlipEncoder`.
    """

    def __init__(self, config: BlipConfig, **kwargs):
        super().__init__(**kwargs)
        self.config = config
        self.layers = [TFBlipEncoderLayer(config, name=f"layers_._{i}") for i in range(config.num_hidden_layers)]

    @unpack_inputs
    def call(
        self,
        inputs_embeds,
        attention_mask: tf.Tensor | None = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: Optional[bool] = None,
    ) -> Union[Tuple, TFBaseModelOutput]:
        r"""
        Args:
            inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
                Embedded representation of the inputs. Should be float, not int tokens.
            attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:

                - 1 for tokens that are **not masked**,
                - 0 for tokens that are **masked**.

                [What are attention masks?](../glossary#attention-mask)
            output_attentions (`bool`, *optional*):
                Whether or not to return the attentions tensors of all attention layers. See `attentions` under
                returned tensors for more detail.
            output_hidden_states (`bool`, *optional*):
                Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
                for more detail.
            return_dict (`bool`, *optional*):
                Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        encoder_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None

        hidden_states = inputs_embeds
        for idx, encoder_layer in enumerate(self.layers):
            if output_hidden_states:
                encoder_states = encoder_states + (hidden_states,)
            layer_outputs = encoder_layer(
                hidden_states,
                attention_mask,
                output_attentions=output_attentions,
                training=training,
            )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[1],)

        if output_hidden_states:
            encoder_states = encoder_states + (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
        return TFBaseModelOutput(
            last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
        )


class TFBlipVisionModel(TFBlipPreTrainedModel):
    main_input_name = "pixel_values"
    config_class = BlipVisionConfig

    def __init__(self, config: BlipVisionConfig, *args, **kwargs):
        super().__init__(config, *args, **kwargs)
        self.config = config

        self.embeddings = TFBlipVisionEmbeddings(config, name="embeddings")
        self.encoder = TFBlipEncoder(config, name="encoder")
        self.post_layernorm = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="post_layernorm")

    def serving_output(self, output: TFBaseModelOutputWithPooling) -> TFBaseModelOutputWithPooling:
        hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
        attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None

        return TFBaseModelOutputWithPooling(
            last_hidden_state=output.last_hidden_state,
            pooler_output=output.pooler_output,
            hidden_states=hs,
            attentions=attns,
        )

    @unpack_inputs
    @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=BlipVisionConfig)
    def call(
        self,
        pixel_values: tf.Tensor | None = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: Optional[bool] = None,
    ) -> Union[Tuple, TFBaseModelOutputWithPooling]:
        r"""
        Returns:

        """
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if pixel_values is None:
            raise ValueError("You have to specify pixel_values")

        hidden_states = self.embeddings(pixel_values)

        encoder_outputs = self.encoder(
            inputs_embeds=hidden_states,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        last_hidden_state = encoder_outputs[0]
        last_hidden_state = self.post_layernorm(last_hidden_state)

        pooled_output = last_hidden_state[:, 0, :]
        # TF gets confused if we call the layer with inputs of different ranks, so insert a singleton dimension
        pooled_output = self.post_layernorm(tf.expand_dims(pooled_output, 1))
        pooled_output = tf.squeeze(pooled_output, 1)

        if not return_dict:
            return (last_hidden_state, pooled_output) + encoder_outputs[1:]

        return TFBaseModelOutputWithPooling(
            last_hidden_state=last_hidden_state,
            pooler_output=pooled_output,
            hidden_states=encoder_outputs.hidden_states,
            attentions=encoder_outputs.attentions,
        )

    def get_input_embeddings(self):
        return self.embeddings


class TFBlipMainLayer(tf.keras.layers.Layer):
    config_class = BlipConfig

    def __init__(self, config: BlipConfig, *args, **kwargs):
        super().__init__(*args, **kwargs)

        if not isinstance(config.text_config, BlipTextConfig):
            raise ValueError(
                "config.text_config is expected to be of type BlipTextConfig but is of type"
                f" {type(config.text_config)}."
            )

        if not isinstance(config.vision_config, BlipVisionConfig):
            raise ValueError(
                "config.vision_config is expected to be of type BlipVisionConfig but is of type"
                f" {type(config.vision_config)}."
            )

        text_config = config.text_config
        vision_config = config.vision_config

        self.projection_dim = config.projection_dim
        self.text_embed_dim = text_config.hidden_size
        self.vision_embed_dim = vision_config.hidden_size

        self.text_model = TFBlipTextModel(text_config, name="text_model")
        self.vision_model = TFBlipVisionModel(vision_config, name="vision_model")

        self.visual_projection = tf.keras.layers.Dense(
            self.projection_dim,
            use_bias=False,
            kernel_initializer=get_initializer(config.initializer_range),
            name="visual_projection",
        )
        self.text_projection = tf.keras.layers.Dense(
            self.projection_dim,
            use_bias=False,
            kernel_initializer=get_initializer(config.initializer_range),
            name="text_projection",
        )

        self.config = config

    def build(self, input_shape=None):
        self.logit_scale = self.add_weight(
            name="logit_scale",
            shape=[],
            initializer=tf.keras.initializers.Constant(self.config.logit_scale_init_value),
            trainable=True,
        )
        super().build(input_shape)

    @unpack_inputs
    def call(
        self,
        input_ids: tf.Tensor | None = None,
        pixel_values: tf.Tensor | None = None,
        attention_mask: tf.Tensor | None = None,
        position_ids: tf.Tensor | None = None,
        return_loss: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: Optional[bool] = None,
    ) -> Union[Tuple, TFBlipOutput]:
        # Use BLIP model's config for some fields (if specified) instead of those of vision & text components.
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        text_outputs = self.text_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        image_embeds = vision_outputs[1]
        image_embeds = self.visual_projection(image_embeds)

        text_embeds = text_outputs[1]
        text_embeds = self.text_projection(text_embeds)

        # normalized features
        image_embeds = image_embeds / tf.norm(image_embeds, ord=2, axis=-1, keepdims=True)
        text_embeds = text_embeds / tf.norm(text_embeds, ord=2, axis=-1, keepdims=True)

        # cosine similarity as logits
        logit_scale = tf.exp(self.logit_scale)
        logits_per_text = tf.matmul(text_embeds, image_embeds, transpose_b=True) * logit_scale
        logits_per_image = tf.transpose(logits_per_text)

        loss = None
        if return_loss:
            loss = blip_loss(logits_per_text)
            loss = tf.reshape(loss, (1,))

        if not return_dict:
            output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
            return ((loss,) + output) if loss is not None else output

        return TFBlipOutput(
            loss=loss,
            logits_per_image=logits_per_image,
            logits_per_text=logits_per_text,
            text_embeds=text_embeds,
            image_embeds=image_embeds,
            text_model_output=text_outputs,
            vision_model_output=vision_outputs,
        )


class TFBlipModel(TFBlipPreTrainedModel):
    config_class = BlipConfig
    _keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"]
    main_input_name = "input_ids"

    def __init__(self, config: BlipConfig, *inputs, **kwargs):
        super().__init__(config, *inputs, **kwargs)

        self.blip = TFBlipMainLayer(config, name="blip")

    def serving_output(self, output: TFBlipOutput) -> TFBlipOutput:
        return TFBlipOutput(
            logits_per_image=output.logits_per_image,
            logits_per_text=output.logits_per_text,
            text_embeds=output.text_embeds,
            image_embeds=output.image_embeds,
        )

    @unpack_inputs
    @add_start_docstrings_to_model_forward(BLIP_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=TFBlipOutput, config_class=BlipConfig)
    def call(
        self,
        input_ids: tf.Tensor | None = None,
        pixel_values: tf.Tensor | None = None,
        attention_mask: tf.Tensor | None = None,
        position_ids: tf.Tensor | None = None,
        return_loss: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: Optional[bool] = None,
    ) -> Union[Tuple, TFBlipOutput]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, TFBlipModel

        >>> model = TFBlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
        >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(
        ...     text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="tf", padding=True
        ... )

        >>> outputs = model(**inputs)
        >>> logits_per_image = outputs.logits_per_image  # this is the image-text similarity score
        >>> probs = tf.nn.softmax(logits_per_image, axis=1)  # we can take the softmax to get the label probabilities
        ```"""
        outputs = self.blip(
            input_ids=input_ids,
            pixel_values=pixel_values,
            attention_mask=attention_mask,
            position_ids=position_ids,
            return_loss=return_loss,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )
        return outputs

    @add_start_docstrings_to_model_forward(BLIP_TEXT_INPUTS_DOCSTRING)
    def get_text_features(
        self,
        input_ids: tf.Tensor | None = None,
        attention_mask: tf.Tensor | None = None,
        position_ids: tf.Tensor | None = None,
        return_dict: Optional[bool] = None,
    ) -> tf.Tensor:
        r"""
        Returns:
            text_features (`tf.Tensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying
            the projection layer to the pooled output of [`TFBlipTextModel`].

        Examples:

        ```python
        >>> from transformers import AutoProcessor, TFBlipModel

        >>> model = TFBlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
        >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")

        >>> inputs = processor(text=["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="tf")
        >>> text_features = model.get_text_features(**inputs)
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        text_outputs = self.blip.text_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            return_dict=return_dict,
        )

        pooled_output = text_outputs[1]
        text_features = self.blip.text_projection(pooled_output)

        return text_features

    @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
    def get_image_features(
        self,
        pixel_values: tf.Tensor | None = None,
        return_dict: Optional[bool] = None,
    ) -> tf.Tensor:
        r"""
        Returns:
            image_features (`tf.Tensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying
            the projection layer to the pooled output of [`TFBlipVisionModel`].

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, TFBlipModel

        >>> model = TFBlipModel.from_pretrained("Salesforce/blip-image-captioning-base")
        >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(images=image, return_tensors="tf")

        >>> image_features = model.get_image_features(**inputs)
        ```"""
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        vision_outputs = self.blip.vision_model(pixel_values=pixel_values, return_dict=return_dict)

        pooled_output = vision_outputs[1]  # pooled_output
        image_features = self.blip.visual_projection(pooled_output)

        return image_features


@add_start_docstrings(
    """
    BLIP Model for image captioning. The model consists of a vision encoder and a text decoder. One can optionally pass
    `input_ids` to the model, which serve as a text prompt, to make the text decoder continue the prompt. Otherwise,
    the decoder starts generating text from the [BOS] (beginning-of-sequence) token. will start generating the caption
    from the text input. If no text input is provided, the decoder will start with the [BOS] token only.
    """,
    BLIP_START_DOCSTRING,
)
class TFBlipForConditionalGeneration(TFBlipPreTrainedModel):
    config_class = BlipConfig
    _keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"]
    main_input_name = "pixel_values"

    def __init__(self, config: BlipConfig, *args, **kwargs):
        super().__init__(config, *args, **kwargs)

        self.vision_model = TFBlipVisionModel(config.vision_config, name="vision_model")

        self.text_decoder = TFBlipTextLMHeadModel(config.text_config, name="text_decoder")

        self.decoder_input_ids = config.text_config.bos_token_id
        self.decoder_pad_token_id = config.text_config.pad_token_id

    def get_input_embeddings(self) -> tf.keras.layers.Layer:
        return self.vision_model.embeddings.patch_embedding

    @unpack_inputs
    @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=TFBlipForConditionalGenerationModelOutput, config_class=BlipConfig)
    def call(
        self,
        pixel_values: tf.Tensor,
        input_ids: tf.Tensor | None = None,
        attention_mask: tf.Tensor | None = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        labels: tf.Tensor | None = None,
        return_dict: Optional[bool] = None,
        training: Optional[bool] = None,
    ) -> Union[Tuple, TFBlipForConditionalGenerationModelOutput]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, TFBlipForConditionalGeneration

        >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
        >>> model = TFBlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)
        >>> text = "A picture of"

        >>> inputs = processor(images=image, text=text, return_tensors="tf")

        >>> outputs = model(**inputs)
        ```"""

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict
        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        image_embeds = vision_outputs[0]

        outputs = self.text_decoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            encoder_hidden_states=image_embeds,
            labels=labels,
            return_dict=return_dict,
            training=training,
        )

        if not return_dict:
            outputs = (outputs[0], outputs[1], image_embeds, vision_outputs[0]) + vision_outputs[2:]
            return tuple(output for output in outputs if output is not None)

        if outputs.loss is not None and outputs.loss.shape.rank == 0:
            outputs.loss = tf.reshape(outputs.loss, (1,))

        return TFBlipForConditionalGenerationModelOutput(
            loss=outputs.loss,
            logits=outputs.logits,
            image_embeds=image_embeds,
            last_hidden_state=vision_outputs.last_hidden_state,
            hidden_states=vision_outputs.hidden_states,
            attentions=vision_outputs.attentions,
        )

    def generate(
        self,
        pixel_values: tf.Tensor,
        input_ids: tf.Tensor | None = None,
        attention_mask: tf.Tensor | None = None,
        **generate_kwargs,
    ) -> tf.Tensor:
        r"""
        Overrides *generate* function to be able to use the model as a conditional generator

        Parameters:
            pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, image_height, image_width)`:
                Input image to be processed
            input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                The sequence used as a prompt for the generation.
            attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:


        Examples:
        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, TFBlipForConditionalGeneration

        >>> model = TFBlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
        >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> inputs = processor(images=image, return_tensors="tf")

        >>> outputs = model.generate(**inputs)
        >>> print(processor.decode(outputs[0], skip_special_tokens=True))
        two cats sleeping on a couch
        ```
        """

        batch_size = pixel_values.shape[0]
        vision_outputs = self.vision_model(pixel_values=pixel_values)

        image_embeds = vision_outputs[0]

        image_attention_mask = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int32)

        if isinstance(input_ids, list):
            input_ids = tf.convert_to_tensor(input_ids, dtype=tf.int32)
        elif input_ids is None:
            input_ids = tf.convert_to_tensor(
                [[self.decoder_input_ids, self.config.text_config.eos_token_id]], dtype=tf.int32
            )

            input_ids = tf.tile(input_ids, (batch_size, 1))

        # PyTorch: input_ids[:, 0] = self.config.text_config.bos_token_id
        input_ids = tf.concat(
            [tf.ones((batch_size, 1), dtype=tf.int32) * self.config.text_config.bos_token_id, input_ids[:, 1:]], axis=1
        )
        attention_mask = attention_mask[:, :-1] if attention_mask is not None else None

        outputs = self.text_decoder.generate(
            input_ids=input_ids[:, :-1],
            eos_token_id=self.config.text_config.sep_token_id,
            pad_token_id=self.config.text_config.pad_token_id,
            attention_mask=attention_mask,
            encoder_hidden_states=image_embeds,
            encoder_attention_mask=image_attention_mask,
            **generate_kwargs,
        )

        return outputs


@add_start_docstrings(
    """
    BLIP Model for visual question answering. The model consists of a vision encoder, a text encoder as well as a text
    decoder. The vision encoder will encode the input image, the text encoder will encode the input question together
    with the encoding of the image, and the text decoder will output the answer to the question.
    """,
    BLIP_START_DOCSTRING,
)
class TFBlipForQuestionAnswering(TFBlipPreTrainedModel):
    config_class = BlipConfig
    _keys_to_ignore_on_load_missing = [r"text_decoder.cls.predictions.decoder.bias"]

    def __init__(self, config: BlipConfig, *args, **kwargs):
        super().__init__(config, *args, **kwargs)

        self.vision_model = TFBlipVisionModel(config.vision_config, name="vision_model")

        self.text_encoder = TFBlipTextModel(config.text_config, name="text_encoder", add_pooling_layer=False)

        self.text_decoder = TFBlipTextLMHeadModel(config.text_config, name="text_decoder")

        self.decoder_pad_token_id = config.text_config.pad_token_id
        self.decoder_start_token_id = config.text_config.bos_token_id

    def get_input_embeddings(self) -> tf.keras.layers.Layer:
        return self.vision_model.embeddings.patch_embedding

    # Adapted from transformers.models.t5.modeling_tf_t5.TFT5PreTrainedModel._shift_right
    def _shift_right(self, input_ids):
        decoder_start_token_id = self.decoder_start_token_id
        pad_token_id = self.decoder_pad_token_id

        if decoder_start_token_id is None or pad_token_id is None:
            raise ValueError("decoder_start_token_id and pad_token_id must be defined!")

        start_tokens = tf.fill((shape_list(input_ids)[0], 1), decoder_start_token_id)
        start_tokens = tf.cast(start_tokens, input_ids.dtype)  # Ensure compatible dtypes for concatenation
        shifted_input_ids = tf.concat([start_tokens, input_ids[:, :-1]], -1)

        # replace possible -100 values in labels by `pad_token_id`
        shifted_input_ids = tf.where(
            shifted_input_ids == -100,
            tf.cast(tf.fill(shape_list(shifted_input_ids), pad_token_id), shifted_input_ids.dtype),
            shifted_input_ids,
        )

        # "Verify that `labels` has only positive values and -100"
        tf.debugging.assert_greater_equal(shifted_input_ids, tf.constant(0, dtype=shifted_input_ids.dtype))

        return shifted_input_ids

    @unpack_inputs
    @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=TFBlipTextVisionModelOutput, config_class=BlipVisionConfig)
    def call(
        self,
        input_ids: tf.Tensor,
        pixel_values: tf.Tensor | None = None,
        decoder_input_ids: tf.Tensor | None = None,
        decoder_attention_mask: tf.Tensor | None = None,
        attention_mask: tf.Tensor | None = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        labels: tf.Tensor | None = None,
        return_dict: Optional[bool] = None,
        training: Optional[bool] = None,
    ) -> Union[Tuple, TFBlipTextVisionModelOutput]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, TFBlipForQuestionAnswering

        >>> model = TFBlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
        >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)

        >>> # training
        >>> text = "How many cats are in the picture?"
        >>> label = "2"
        >>> inputs = processor(images=image, text=text, return_tensors="tf")
        >>> labels = processor(text=label, return_tensors="tf").input_ids

        >>> inputs["labels"] = labels
        >>> outputs = model(**inputs)
        >>> loss = outputs.loss

        >>> # inference
        >>> text = "How many cats are in the picture?"
        >>> inputs = processor(images=image, text=text, return_tensors="tf")
        >>> outputs = model.generate(**inputs)
        >>> print(processor.decode(outputs[0], skip_special_tokens=True))
        2
        ```"""
        if labels is None and decoder_input_ids is None:
            raise ValueError(
                "Either `decoder_input_ids` or `labels` should be passed when calling"
                " `TFBlipForQuestionAnswering`. if you are training the model make sure that `labels` is passed, if you"
                " are using the model for inference make sure that `decoder_input_ids` is passed or call `generate`"
            )

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        image_embeds = vision_outputs[0]
        image_attention_mask = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int64)

        question_embeds = self.text_encoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            encoder_hidden_states=image_embeds,
            encoder_attention_mask=image_attention_mask,
            return_dict=return_dict,
            training=training,
        )

        question_embeds = question_embeds[0] if not return_dict else question_embeds.last_hidden_state

        if labels is not None and decoder_input_ids is None:
            # labels are already shifted right, see: https://github.com/huggingface/transformers/pull/23153
            decoder_input_ids = labels

        answer_output = self.text_decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            encoder_hidden_states=question_embeds,
            encoder_attention_mask=attention_mask,
            labels=labels,
            return_dict=return_dict,
            training=training,
        )

        if labels is not None:
            decoder_loss = tf.reduce_mean(answer_output.loss) if return_dict else tf.reduce_mean(answer_output[0])
        else:
            decoder_loss = None

        if not return_dict:
            outputs = (decoder_loss, image_embeds, vision_outputs[0]) + vision_outputs[2:]
            return tuple(output for output in outputs if output is not None)

        return TFBlipTextVisionModelOutput(
            loss=decoder_loss,
            image_embeds=image_embeds,
            last_hidden_state=vision_outputs.last_hidden_state,
            hidden_states=vision_outputs.hidden_states,
            attentions=vision_outputs.attentions,
        )

    def generate(
        self,
        input_ids: tf.Tensor,
        pixel_values: tf.Tensor,
        attention_mask: tf.Tensor | None = None,
        **generate_kwargs,
    ) -> tf.Tensor:
        r"""
        Overrides *generate* function to be able to use the model as a conditional generator

        Parameters:
            input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
                The sequence used as a prompt for the generation.
            pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, image_height, image_width)`:
                Input image to be processed
            attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
                Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`. `1` for
                tokens that are NOT MASKED, `0` for MASKED tokens.
            generate_kwargs (dict, *optional*):
                Additional arguments passed to the `generate` function of the decoder


        Examples:
        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, TFBlipForQuestionAnswering

        >>> model = TFBlipForQuestionAnswering.from_pretrained("Salesforce/blip-vqa-base")
        >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-vqa-base")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)
        >>> text = "How many cats are in the picture?"

        >>> inputs = processor(images=image, text=text, return_tensors="tf")

        >>> outputs = model.generate(**inputs)
        >>> print(processor.decode(outputs[0], skip_special_tokens=True))
        2
        ```
        """
        vision_outputs = self.vision_model(pixel_values=pixel_values)

        image_embeds = vision_outputs[0]

        image_attention_mask = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int32)

        if isinstance(input_ids, list):
            input_ids = tf.Tensor(input_ids)

        question_outputs = self.text_encoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            encoder_hidden_states=image_embeds,
            encoder_attention_mask=image_attention_mask,
            return_dict=False,
        )

        question_embeds = question_outputs[0]

        question_attention_mask = tf.ones(shape_list(question_embeds)[:-1], dtype=tf.int32)

        bos_ids = tf.fill(
            (tf.shape(question_embeds)[0], 1), value=tf.cast(self.decoder_start_token_id, input_ids.dtype)
        )

        outputs = self.text_decoder.generate(
            input_ids=bos_ids,
            eos_token_id=self.config.text_config.sep_token_id,
            pad_token_id=self.config.text_config.pad_token_id,
            encoder_hidden_states=question_embeds,
            encoder_attention_mask=question_attention_mask,
            **generate_kwargs,
        )

        return outputs


@add_start_docstrings(
    """
    BLIP Model with a vision and text projector, and a classification head on top. The model is used in the context of
    image-text retrieval. Given an image and a text, the model returns the probability of the text being relevant to
    the image.
    """,
    BLIP_START_DOCSTRING,
)
class TFBlipForImageTextRetrieval(TFBlipPreTrainedModel):
    config_class = BlipConfig

    def __init__(self, config: BlipConfig, *args, **kwargs):
        super().__init__(config, *args, **kwargs)

        self.vision_model = TFBlipVisionModel(config.vision_config, name="vision_model")

        self.text_encoder = TFBlipTextModel(config.text_config, name="text_encoder", add_pooling_layer=False)

        # vision projection layer
        self.vision_proj = tf.keras.layers.Dense(
            config.image_text_hidden_size,
            kernel_initializer=get_initializer(config.initializer_range),
            name="vision_proj",
        )

        # text projection layer
        self.text_proj = tf.keras.layers.Dense(
            config.image_text_hidden_size,
            kernel_initializer=get_initializer(config.initializer_range),
            name="text_proj",
        )

        # image text matching head
        self.itm_head = tf.keras.layers.Dense(
            2, kernel_initializer=get_initializer(config.initializer_range), name="itm_head"
        )

        self.decoder_pad_token_id = (
            config.text_config.pad_token_id
            if not hasattr(config, "decoder_pad_token_id")
            else config.decoder_pad_token_id
        )
        self.decoder_start_token_id = (
            config.text_config.bos_token_id
            if not hasattr(config, "decoder_start_token_id")
            else config.decoder_start_token_id
        )

    def get_input_embeddings(self) -> tf.keras.layers.Layer:
        return self.vision_model.embeddings.patch_embedding

    @unpack_inputs
    @add_start_docstrings_to_model_forward(BLIP_VISION_INPUTS_DOCSTRING)
    @replace_return_docstrings(output_type=TFBlipImageTextMatchingModelOutput, config_class=BlipVisionConfig)
    def call(
        self,
        input_ids: tf.Tensor,
        pixel_values: tf.Tensor | None = None,
        use_itm_head: Optional[bool] = True,
        attention_mask: tf.Tensor | None = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        training: Optional[bool] = None,
    ) -> Union[Tuple, TFBlipImageTextMatchingModelOutput]:
        r"""
        Returns:

        Examples:

        ```python
        >>> from PIL import Image
        >>> import requests
        >>> from transformers import AutoProcessor, TFBlipForImageTextRetrieval

        >>> model = TFBlipForImageTextRetrieval.from_pretrained("Salesforce/blip-itm-base-coco")
        >>> processor = AutoProcessor.from_pretrained("Salesforce/blip-itm-base-coco")

        >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
        >>> image = Image.open(requests.get(url, stream=True).raw)
        >>> text = "an image of a cat"

        >>> inputs = processor(images=image, text=text, return_tensors="tf")
        >>> outputs = model(**inputs)
        ```
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        vision_outputs = self.vision_model(
            pixel_values=pixel_values,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            training=training,
        )

        image_embeds = vision_outputs[0]
        image_atts = tf.ones(shape_list(image_embeds)[:-1], dtype=tf.int64)

        # Matt: In PyTorch, only one path (itm/non-itm) is taken. However, in TensorFlow this can result in
        # some layers not being built! To avoid this, we always call both paths, then use an if statement to select
        # which output to pass to the final output. The unnecessary nodes will be pruned from the final graph, but
        # not before the layers have all been built correctly.
        itm_question_embeds = self.text_encoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            encoder_hidden_states=image_embeds,
            encoder_attention_mask=image_atts,
            return_dict=return_dict,
            training=training,
        )
        itm_question_embeds = itm_question_embeds[0] if not return_dict else itm_question_embeds.last_hidden_state

        itm_output = self.itm_head(itm_question_embeds[:, 0, :])

        no_itm_question_embeds = self.text_encoder(
            input_ids=input_ids,
            attention_mask=attention_mask,
            return_dict=return_dict,
            training=training,
        )
        no_itm_question_embeds = (
            no_itm_question_embeds[0] if not return_dict else no_itm_question_embeds.last_hidden_state
        )

        image_feat, _ = tf.linalg.normalize(self.vision_proj(image_embeds[:, 0, :]), ord=2, axis=-1)
        text_feat, _ = tf.linalg.normalize(self.text_proj(no_itm_question_embeds[:, 0, :]), ord=2, axis=-1)

        no_itm_output = tf.matmul(image_feat, text_feat, transpose_b=True)

        if use_itm_head:
            output = itm_output
            question_embeds = itm_question_embeds
        else:
            output = no_itm_output
            question_embeds = no_itm_question_embeds

        if not return_dict:
            outputs = (output, vision_outputs[0]) + vision_outputs[2:] + (question_embeds,)
            return tuple(output for output in outputs if output is not None)

        return TFBlipImageTextMatchingModelOutput(
            itm_score=output,
            last_hidden_state=vision_outputs.last_hidden_state,
            hidden_states=vision_outputs.hidden_states,
            attentions=vision_outputs.attentions,
            question_embeds=question_embeds,
        )