File size: 1,836 Bytes
0429187 4148143 0429187 4148143 0429187 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import os
import subprocess
import torch
print(os.listdir('/usr/local/'))
print(torch.version.cuda)
class EndpointHandler():
def __init__(self, path=""):
is_production = True
os.chdir("/repository" if is_production else "/workspace/eri2")
os.environ['AM_I_DOCKER'] = 'False'
os.environ['BUILD_WITH_CUDA'] = 'True'
os.environ['CUDA_HOME'] = '/usr/local/cuda-11.7/'
# Install Segment Anything
subprocess.run(["python", "-m", "pip", "install", "-e", "segment_anything"])
# Install Grounding DINO
subprocess.run(["python", "-m", "pip", "install", "-e", "GroundingDINO"])
# Install diffusers
subprocess.run(["pip", "install", "--upgrade", "diffusers[torch]"])
# Install osx
subprocess.run(["git", "submodule", "update", "--init", "--recursive"])
subprocess.run(["bash", "grounded-sam-osx/install.sh"], cwd="grounded-sam-osx")
# Install RAM & Tag2Text
subprocess.run(["git", "clone", "https://github.com/xinyu1205/recognize-anything.git"])
subprocess.run(["pip", "install", "-r", "./recognize-anything/requirements.txt"])
subprocess.run(["pip", "install", "-e", "./recognize-anything/"])
def __call__(self, data):
"""
data args:
inputs (:obj: `str`)
date (:obj: `str`)
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
# get inputs
inputs = data.pop("inputs",data)
date = data.pop("date", None)
# check if date exists and if it is a holiday
if date is not None and date in self.holidays:
return [{"label": "happy", "score": 1}]
# run normal prediction
prediction = self.pipeline(inputs)
return prediction |