File size: 1,836 Bytes
0429187
 
 
 
 
 
 
 
 
4148143
0429187
 
 
 
 
4148143
0429187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import os
import subprocess
import torch

print(os.listdir('/usr/local/'))
print(torch.version.cuda)

class EndpointHandler():
    def __init__(self, path=""):
        is_production = True
        
        os.chdir("/repository" if is_production else "/workspace/eri2")
        
        os.environ['AM_I_DOCKER'] = 'False'
        os.environ['BUILD_WITH_CUDA'] = 'True'
        os.environ['CUDA_HOME'] = '/usr/local/cuda-11.7/'

        # Install Segment Anything
        subprocess.run(["python", "-m", "pip", "install", "-e", "segment_anything"])

        # Install Grounding DINO
        subprocess.run(["python", "-m", "pip", "install", "-e", "GroundingDINO"])

        # Install diffusers
        subprocess.run(["pip", "install", "--upgrade", "diffusers[torch]"])

        # Install osx
        subprocess.run(["git", "submodule", "update", "--init", "--recursive"])
        subprocess.run(["bash", "grounded-sam-osx/install.sh"], cwd="grounded-sam-osx")

        # Install RAM & Tag2Text
        subprocess.run(["git", "clone", "https://github.com/xinyu1205/recognize-anything.git"])
        subprocess.run(["pip", "install", "-r", "./recognize-anything/requirements.txt"])
        subprocess.run(["pip", "install", "-e", "./recognize-anything/"])

    def __call__(self, data):
        """
       data args:
            inputs (:obj: `str`)
            date (:obj: `str`)
      Return:
            A :obj:`list` | `dict`: will be serialized and returned
        """
        # get inputs
        inputs = data.pop("inputs",data)
        date = data.pop("date", None)

        # check if date exists and if it is a holiday
        if date is not None and date in self.holidays:
          return [{"label": "happy", "score": 1}]


        # run normal prediction
        prediction = self.pipeline(inputs)
        return prediction