File size: 3,983 Bytes
aede1d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
#!/usr/bin/env python3
# Portions Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import math

import einops
import numpy as np
import torch

import torch.nn as nn


class Normalize(nn.Module):
    def __init__(self, dim: int) -> None:
        super().__init__()
        self.dim = dim

    def forward(self, x):
        return torch.nn.functional.normalize(x, dim=self.dim, p=2)


class LearnableLogitScaling(nn.Module):
    def __init__(
        self,
        logit_scale_init: float = 1 / 0.07,
        learnable: bool = True,
        max_logit_scale: float = 100,
    ) -> None:
        super().__init__()
        self.max_logit_scale = max_logit_scale
        self.logit_scale_init = logit_scale_init
        self.learnable = learnable
        log_logit_scale = torch.ones([]) * np.log(self.logit_scale_init)
        if learnable:
            self.log_logit_scale = nn.Parameter(log_logit_scale)
        else:
            self.register_buffer("log_logit_scale", log_logit_scale)

    def forward(self, x):
        return torch.clip(self.log_logit_scale.exp(), max=self.max_logit_scale) * x

    def extra_repr(self):
        st = f"logit_scale_init={self.logit_scale_init},learnable={self.learnable}, max_logit_scale={self.max_logit_scale}"
        return st


class EinOpsRearrange(nn.Module):
    def __init__(self, rearrange_expr: str, **kwargs) -> None:
        super().__init__()
        self.rearrange_expr = rearrange_expr
        self.kwargs = kwargs

    def forward(self, x):
        assert isinstance(x, torch.Tensor)
        return einops.rearrange(x, self.rearrange_expr, **self.kwargs)


class VerboseNNModule(nn.Module):
    """
    Wrapper around nn.Module that prints registered buffers and parameter names.
    """

    @staticmethod
    def get_readable_tensor_repr(name: str, tensor: torch.Tensor) -> str:
        st = (
            "("
            + name
            + "): "
            + "tensor("
            + str(tuple(tensor[1].shape))
            + ", requires_grad="
            + str(tensor[1].requires_grad)
            + ")\n"
        )
        return st

    def extra_repr(self) -> str:
        named_modules = set()
        for p in self.named_modules():
            named_modules.update([p[0]])
        named_modules = list(named_modules)

        string_repr = ""
        for p in self.named_parameters():
            name = p[0].split(".")[0]
            if name not in named_modules:
                string_repr += self.get_readable_tensor_repr(name, p)

        for p in self.named_buffers():
            name = p[0].split(".")[0]
            string_repr += self.get_readable_tensor_repr(name, p)

        return string_repr


def cast_if_src_dtype(
    tensor: torch.Tensor, src_dtype: torch.dtype, tgt_dtype: torch.dtype
):
    updated = False
    if tensor.dtype == src_dtype:
        tensor = tensor.to(dtype=tgt_dtype)
        updated = True
    return tensor, updated


class QuickGELU(nn.Module):
    # From https://github.com/openai/CLIP/blob/d50d76daa670286dd6cacf3bcd80b5e4823fc8e1/clip/model.py#L166
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)


class SelectElement(nn.Module):
    def __init__(self, index) -> None:
        super().__init__()
        self.index = index

    def forward(self, x):
        assert x.ndim >= 3
        return x[:, self.index, ...]


class SelectEOSAndProject(nn.Module):
    """
    Text Pooling used in OpenCLIP
    """

    def __init__(self, proj: nn.Module) -> None:
        super().__init__()
        self.proj = proj

    def forward(self, x, seq_len):
        assert x.ndim == 3
        # x is of shape B x L x D
        # take features from the eot embedding (eot_token is the highest number in each sequence)
        x = x[torch.arange(x.shape[0]), seq_len]
        x = self.proj(x)
        return x