File size: 2,383 Bytes
72dddd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# Openpose
# Original from CMU https://github.com/CMU-Perceptual-Computing-Lab/openpose
# 2nd Edited by https://github.com/Hzzone/pytorch-openpose
# 3rd Edited by ControlNet
# 4th Edited by ControlNet (added face and correct hands)

import os
import sys
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

import torch
import numpy as np
from . import util
from .wholebody import Wholebody
from .annotatorUtil import resize_image, HWC3
from PIL import Image

def draw_pose(pose, H, W):
    bodies = pose['bodies']
    faces = pose['faces']
    hands = pose['hands']
    candidate = bodies['candidate']
    subset = bodies['subset']
    canvas = np.zeros(shape=(H, W, 3), dtype=np.uint8)

    canvas = util.draw_bodypose(canvas, candidate, subset)

    canvas = util.draw_handpose(canvas, hands)

    canvas = util.draw_facepose(canvas, faces)

    return canvas


class DWposeDetector:
    def __init__(self):

        self.pose_estimation = Wholebody()

    def __call__(self, oriImg):
        oriImg = oriImg.copy()
        H, W, C = oriImg.shape
        with torch.no_grad():
            candidate, subset = self.pose_estimation(oriImg)
            nums, keys, locs = candidate.shape
            candidate[..., 0] /= float(W)
            candidate[..., 1] /= float(H)
            body = candidate[:,:18].copy()
            body = body.reshape(nums*18, locs)
            score = subset[:,:18]
            for i in range(len(score)):
                for j in range(len(score[i])):
                    if score[i][j] > 0.3:
                        score[i][j] = int(18*i+j)
                    else:
                        score[i][j] = -1

            un_visible = subset<0.3
            candidate[un_visible] = -1

            foot = candidate[:,18:24]

            faces = candidate[:,24:92]

            hands = candidate[:,92:113]
            hands = np.vstack([hands, candidate[:,113:]])
            
            bodies = dict(candidate=body, subset=score)
            pose = dict(bodies=bodies, hands=hands, faces=faces)

            return draw_pose(pose, H, W)


model_dwpose = None

def dwpose(img, res):
    img = np.array(img) 
    img = resize_image(HWC3(img), res)
    global model_dwpose
    if model_dwpose is None:
        model_dwpose = DWposeDetector()
    result = model_dwpose(img)
    result_pil = Image.fromarray(np.uint8(result)).convert('RGB')
    return result_pil