File size: 2,492 Bytes
d8260c5
 
e606528
 
d8260c5
a83b114
e606528
 
 
a83b114
e606528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a83b114
 
e606528
 
 
 
 
 
 
 
a83b114
e606528
a83b114
e606528
 
 
 
 
a83b114
e606528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: mit
language:
- pt
---
# bertimbau-large-ner-total

This model card aims to simplify the use of the [portuguese Bert, a.k.a, Bertimbau](https://github.com/neuralmind-ai/portuguese-bert) for the Named Entity Recognition task. 

For this model card the we used the <mark style="background-color: grey"> BERT-CRF (total scenario, 10 classes) </mark> model available in the [ner_evaluation](https://github.com/neuralmind-ai/portuguese-bert/tree/master/ner_evaluation) folder of the original Bertimbau repo.

Available classes are:
+ PESSOA
+ ORGANIZACAO
+ LOCAL
+ TEMPO
+ VALOR
+ ABSTRACCAO
+ ACONTECIMENTO
+ COISA
+ OBRA
+ OUTRO

## Usage

```
# Load model directly
from transformers import AutoTokenizer, AutoModelForTokenClassification

tokenizer = AutoTokenizer.from_pretrained("marquesafonso/bertimbau-large-ner-total")
model = AutoModelForTokenClassification.from_pretrained("marquesafonso/bertimbau-large-ner-total")

```

## Example

```
from transformers import pipeline

pipe = pipeline("ner", model="marquesafonso/bertimbau-large-ner-total", aggregation_strategy='simple')

sentence = "James Marsh, realizador de filmes como A Teoria de Tudo ou Homem no Arame, assumiu a missão de criar uma obra biográfica sobre Samue Beckett, figura ímpar da literatura e da dramaturgia do século XX. O guião foi escrito pelo escocês Neil Forsyth, vencedor de dois Baftas."

result = pipe([sentence])

print(f"{sentence}\n{result}")


```

## Acknowledgements

This work is an adaptation of [portuguese Bert, a.k.a, Bertimbau](https://github.com/neuralmind-ai/portuguese-bert). You may check and/or cite their [work](http://arxiv.org/abs/1909.10649):

```
@InProceedings{souza2020bertimbau,
    author="Souza, F{\'a}bio and Nogueira, Rodrigo and Lotufo, Roberto",
    editor="Cerri, Ricardo and Prati, Ronaldo C.",
    title="BERTimbau: Pretrained BERT Models for Brazilian Portuguese",
    booktitle="Intelligent Systems",
    year="2020",
    publisher="Springer International Publishing",
    address="Cham",
    pages="403--417",
    isbn="978-3-030-61377-8"
}


@article{souza2019portuguese,
    title={Portuguese Named Entity Recognition using BERT-CRF},
    author={Souza, F{\'a}bio and Nogueira, Rodrigo and Lotufo, Roberto},
    journal={arXiv preprint arXiv:1909.10649},
    url={http://arxiv.org/abs/1909.10649},
    year={2019}
}
```

Note that the authors - Fabio Capuano de Souza, Rodrigo Nogueira, Roberto de Alencar Lotufo - have used an MIT LICENSE for their work.