File size: 2,961 Bytes
0677544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
feb9bb5
 
 
 
0677544
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
feb9bb5
0677544
 
 
 
 
feb9bb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0677544
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: bert-finetuned-sla
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-finetuned-sla

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2965
- F1: 0.7121
- Roc Auc: 0.8162
- Accuracy: 0.5098

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| No log        | 1.0   | 30   | 0.5013          | 0.1842 | 0.5497  | 0.0784   |
| No log        | 2.0   | 60   | 0.4369          | 0.15   | 0.5337  | 0.0784   |
| No log        | 3.0   | 90   | 0.3724          | 0.5794 | 0.7141  | 0.4118   |
| No log        | 4.0   | 120  | 0.3463          | 0.6560 | 0.7738  | 0.4314   |
| No log        | 5.0   | 150  | 0.3212          | 0.6452 | 0.7664  | 0.4314   |
| No log        | 6.0   | 180  | 0.3092          | 0.6190 | 0.7539  | 0.4510   |
| No log        | 7.0   | 210  | 0.3096          | 0.6772 | 0.7885  | 0.4902   |
| No log        | 8.0   | 240  | 0.3025          | 0.6870 | 0.7997  | 0.4706   |
| No log        | 9.0   | 270  | 0.3118          | 0.6875 | 0.7958  | 0.4902   |
| No log        | 10.0  | 300  | 0.2965          | 0.7121 | 0.8162  | 0.5098   |
| No log        | 11.0  | 330  | 0.2971          | 0.7023 | 0.8088  | 0.4902   |
| No log        | 12.0  | 360  | 0.3071          | 0.6866 | 0.8036  | 0.4510   |
| No log        | 13.0  | 390  | 0.3015          | 0.6718 | 0.7907  | 0.4510   |
| No log        | 14.0  | 420  | 0.3087          | 0.6718 | 0.7907  | 0.4314   |
| No log        | 15.0  | 450  | 0.2978          | 0.6970 | 0.8071  | 0.4706   |
| No log        | 16.0  | 480  | 0.3058          | 0.6718 | 0.7907  | 0.4510   |
| 0.219         | 17.0  | 510  | 0.3039          | 0.6769 | 0.7924  | 0.4510   |
| 0.219         | 18.0  | 540  | 0.3015          | 0.6870 | 0.7997  | 0.4706   |
| 0.219         | 19.0  | 570  | 0.3011          | 0.6870 | 0.7997  | 0.4706   |
| 0.219         | 20.0  | 600  | 0.3014          | 0.6870 | 0.7997  | 0.4706   |


### Framework versions

- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2