File size: 3,201 Bytes
d84f4ed
ef3cdad
 
61752de
d84f4ed
ef3cdad
 
d84f4ed
f165be0
 
 
d84f4ed
3042312
d84f4ed
f165be0
 
 
 
 
 
 
 
 
 
 
 
d4f5dc4
f165be0
 
d4f5dc4
f165be0
 
 
 
 
 
 
 
 
 
d4f5dc4
f165be0
 
d4f5dc4
d84f4ed
 
 
 
3042312
 
 
 
d84f4ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55a2553
628520f
 
d84f4ed
074846f
628520f
d84f4ed
 
3042312
 
d84f4ed
 
 
 
55a2553
 
3042312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d84f4ed
 
 
 
628520f
 
 
d84f4ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
---
language:
- sv-SE
license: cc0-1.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- sv
- robust-speech-event
- model_for_talk
datasets:
- common_voice
model-index:
- name: XLS-R-300M - Swedish
  results:
  - task: 
      name: Automatic Speech Recognition 
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_8_0
      type: mozilla-foundation/common_voice_8_0
      args: sv-SE
    metrics:
       - name: Test WER
         type: wer
         value: 8.72
       - name: Test CER
         type: cer
         value: 3.05
  - task: 
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: speech-recognition-community-v2/dev_data
      type: speech-recognition-community-v2/dev_data
      args: sv
    metrics:
       - name: Test WER
         type: wer
         value: 19.67
       - name: Test CER
         type: cer
         value: 8.94
---

# 

This model is a fine-tuned version of [KBLab/wav2vec2-large-voxrex](https://huggingface.co/KBLab/wav2vec2-large-voxrex) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SV-SE dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1595
- Wer: 0.1200

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.00025
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.25
- num_epochs: 100.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.0418        | 5.49  | 500  | 3.0176          | 1.0    |
| 1.1819        | 10.98 | 1000 | 0.2562          | 0.2168 |
| 1.0032        | 16.48 | 1500 | 0.1746          | 0.1546 |
| 0.9077        | 21.97 | 2000 | 0.1600          | 0.1339 |
| 0.8687        | 27.47 | 2500 | 0.1647          | 0.1378 |
| 0.8081        | 32.96 | 3000 | 0.1608          | 0.1353 |
| 0.7923        | 38.46 | 3500 | 0.1534          | 0.1277 |
| 0.7349        | 43.95 | 4000 | 0.1546          | 0.1303 |
| 0.7199        | 49.45 | 4500 | 0.1617          | 0.1277 |
| 0.7028        | 54.94 | 5000 | 0.1572          | 0.1287 |
| 0.6912        | 60.44 | 5500 | 0.1560          | 0.1249 |
| 0.6492        | 65.93 | 6000 | 0.1542          | 0.1260 |
| 0.6407        | 71.43 | 6500 | 0.1605          | 0.1240 |
| 0.6222        | 76.92 | 7000 | 0.1577          | 0.1219 |
| 0.6039        | 82.42 | 7500 | 0.1645          | 0.1249 |
| 0.5928        | 87.91 | 8000 | 0.1590          | 0.1214 |
| 0.6022        | 93.4  | 8500 | 0.1597          | 0.1213 |
| 0.5814        | 98.9  | 9000 | 0.1599          | 0.1199 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0