File size: 19,605 Bytes
1ce325b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
/* Load tuning instances and filter underlying models to them. A tuning
* instance is an n-gram in the tuning file. To tune towards these, we want
* the correct probability p_i(w_n | w_1^{n-1}) from each model as well as
* all the denominators p_i(v | w_1^{n-1}) that appear in normalization.
*
* In other words, we filter the models to only those n-grams whose context
* appears in the tuning data. This can be divided into two categories:
* - All unigrams. This goes into Instances::ln_unigrams_
* - Bigrams and above whose context appears in the tuning data. These are
* known as extensions. We only care about the longest extension for each
* w_1^{n-1}v since that is what will be used for the probability.
* Because there is a large number of extensions (we tried keeping them in RAM
* and ran out), the streaming framework is used to keep track of extensions
* and sort them so they can be streamed in. Downstream code
* (tune_derivatives.hh) takes a stream of extensions ordered by tuning
* instance, the word v, and the model the extension came from.
*/
#include "tune_instances.hh"
#include "../common/compare.hh"
#include "../common/joint_order.hh"
#include "../common/model_buffer.hh"
#include "../common/ngram_stream.hh"
#include "../common/renumber.hh"
#include "../enumerate_vocab.hh"
#include "merge_vocab.hh"
#include "universal_vocab.hh"
#include "../lm_exception.hh"
#include "../../util/file_piece.hh"
#include "../../util/murmur_hash.hh"
#include "../../util/stream/chain.hh"
#include "../../util/stream/io.hh"
#include "../../util/stream/sort.hh"
#include "../../util/tokenize_piece.hh"
#include <boost/shared_ptr.hpp>
#include <boost/unordered_map.hpp>
#include <cmath>
#include <limits>
#include <vector>
namespace lm { namespace interpolate {
// gcc 4.6 complains about uninitialized when sort code is generated for a 4-byte POD. But that sort code is never used.
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wuninitialized"
bool Extension::operator<(const Extension &other) const {
if (instance != other.instance)
return instance < other.instance;
if (word != other.word)
return word < other.word;
if (model != other.model)
return model < other.model;
return false;
}
#pragma GCC diagnostic pop
namespace {
// An extension without backoff weights applied yet.
#pragma pack(push)
#pragma pack(1)
struct InitialExtension {
Extension ext;
// Order from which it came.
uint8_t order;
};
#pragma pack(pop)
struct InitialExtensionCompare {
bool operator()(const void *first, const void *second) const {
return reinterpret_cast<const InitialExtension *>(first)->ext < reinterpret_cast<const InitialExtension *>(second)->ext;
}
};
// Intended use
// For each model:
// stream through orders jointly in suffix order:
// Call MatchedBackoff for full matches.
// Call Exit when the context matches.
// Call FinishModel with the unigram probability of the correct word, get full
// probability in return.
// Use backoffs_out to adjust records that were written to the stream.
// backoffs_out(model, order - 1) is the penalty for matching order.
class InstanceMatch {
public:
InstanceMatch(Matrix &backoffs_out, const WordIndex correct)
: seen_(std::numeric_limits<WordIndex>::max()),
backoffs_(backoffs_out),
correct_(correct), correct_from_(1), correct_ln_prob_(std::numeric_limits<float>::quiet_NaN()) {}
void MatchedBackoff(ModelIndex model, uint8_t order, float ln_backoff) {
backoffs_(model, order - 1) = ln_backoff;
}
// We only want the highest-order matches, which are the first to be exited for a given word.
void Exit(const InitialExtension &from, util::stream::Stream &out) {
if (from.ext.word == seen_) return;
seen_ = from.ext.word;
*static_cast<InitialExtension*>(out.Get()) = from;
++out;
if (UTIL_UNLIKELY(correct_ == from.ext.word)) {
correct_from_ = from.order;
correct_ln_prob_ = from.ext.ln_prob;
}
}
WordIndex Correct() const { return correct_; }
// Call this after each model has been passed through. Provide the unigram
// probability of the correct word (which follows the given context).
// This function will return the fully-backed-off probability of the correct
// word.
float FinishModel(ModelIndex model, float correct_ln_unigram) {
seen_ = std::numeric_limits<WordIndex>::max();
// Turn backoffs into multiplied values (added in log space).
// So backoffs_(model, order - 1) is the penalty for matching order.
float accum = 0.0;
for (int order = backoffs_.cols() - 1; order >= 0; --order) {
accum += backoffs_(model, order);
backoffs_(model, order) = accum;
}
if (correct_from_ == 1) {
correct_ln_prob_ = correct_ln_unigram;
}
if (correct_from_ - 1 < backoffs_.cols()) {
correct_ln_prob_ += backoffs_(model, correct_from_ - 1);
}
correct_from_ = 1;
return correct_ln_prob_;
}
private:
// What's the last word we've seen? Used to act only on exiting the longest match.
WordIndex seen_;
Matrix &backoffs_;
const WordIndex correct_;
// These only apply to the most recent model.
uint8_t correct_from_;
float correct_ln_prob_;
};
// Forward information to multiple instances of a context. So if the tuning
// set contains
// a b c d e
// a b c d e
// there's one DispatchContext for a b c d which calls two InstanceMatch, one
// for each tuning instance. This might be to inform them about a b c d g in
// one of the models.
class DispatchContext {
public:
void Register(InstanceMatch &context) {
registered_.push_back(&context);
}
void MatchedBackoff(ModelIndex model, uint8_t order, float ln_backoff) {
for (std::vector<InstanceMatch*>::iterator i = registered_.begin(); i != registered_.end(); ++i)
(*i)->MatchedBackoff(model, order, ln_backoff);
}
void Exit(InitialExtension &from, util::stream::Stream &out, const InstanceMatch *base_instance) {
for (std::vector<InstanceMatch*>::iterator i = registered_.begin(); i != registered_.end(); ++i) {
from.ext.instance = *i - base_instance;
(*i)->Exit(from, out);
}
}
private:
// TODO make these offsets in a big array rather than separately allocated.
std::vector<InstanceMatch*> registered_;
};
// Map from n-gram hash to contexts in the tuning data. TODO: probing hash table?
typedef boost::unordered_map<uint64_t, DispatchContext> ContextMap;
// Handle all the orders of a single model at once.
class JointOrderCallback {
public:
JointOrderCallback(
std::size_t model,
std::size_t full_order_minus_1,
ContextMap &contexts,
util::stream::Stream &out,
const InstanceMatch *base_instance)
: full_order_minus_1_(full_order_minus_1),
contexts_(contexts),
out_(out),
base_instance_(base_instance) {
ext_.ext.model = model;
}
void Enter(std::size_t order_minus_1, const void *data) {}
void Exit(std::size_t order_minus_1, void *data) {
// Match the full n-gram for backoffs.
if (order_minus_1 != full_order_minus_1_) {
NGram<ProbBackoff> gram(data, order_minus_1 + 1);
ContextMap::iterator i = contexts_.find(util::MurmurHashNative(gram.begin(), gram.Order() * sizeof(WordIndex)));
if (UTIL_UNLIKELY(i != contexts_.end())) {
i->second.MatchedBackoff(ext_.ext.model, gram.Order(), gram.Value().backoff * M_LN10);
}
}
// Match the context of the n-gram to indicate it's an extension.
ContextMap::iterator i = contexts_.find(util::MurmurHashNative(data, order_minus_1 * sizeof(WordIndex)));
if (UTIL_UNLIKELY(i != contexts_.end())) {
NGram<Prob> gram(data, order_minus_1 + 1);
// model is already set.
// instance is set by DispatchContext.
// That leaves word, ln_prob, and order.
ext_.ext.word = *(gram.end() - 1);
ext_.ext.ln_prob = gram.Value().prob * M_LN10;
ext_.order = order_minus_1 + 1;
// model was already set in the constructor.
// ext_.ext.instance is set by the Exit call.
i->second.Exit(ext_, out_, base_instance_);
}
}
void Run(const util::stream::ChainPositions &positions) {
JointOrder<JointOrderCallback, SuffixOrder>(positions, *this);
}
private:
const std::size_t full_order_minus_1_;
// Mapping is constant but values are being manipulated to tell them about
// n-grams.
ContextMap &contexts_;
// Reused variable. model is set correctly.
InitialExtension ext_;
util::stream::Stream &out_;
const InstanceMatch *const base_instance_;
};
// This populates the ln_unigrams_ matrix. It can (and should for efficiency)
// be run in the same scan as JointOrderCallback.
class ReadUnigrams {
public:
explicit ReadUnigrams(Matrix::ColXpr out) : out_(out) {}
// Read renumbered unigrams, fill with <unk> otherwise.
void Run(const util::stream::ChainPosition &position) {
NGramStream<ProbBackoff> stream(position);
assert(stream);
Accum unk = stream->Value().prob * M_LN10;
WordIndex previous = 0;
for (; stream; ++stream) {
WordIndex word = *stream->begin();
out_.segment(previous, word - previous) = Vector::Constant(word - previous, unk);
out_(word) = stream->Value().prob * M_LN10;
//backoffs are used by JointOrderCallback.
previous = word + 1;
}
out_.segment(previous, out_.rows() - previous) = Vector::Constant(out_.rows() - previous, unk);
}
private:
Matrix::ColXpr out_;
};
// Read tuning data into an array of vocab ids. The vocab ids are agreed with MergeVocab.
class IdentifyTuning : public EnumerateVocab {
public:
IdentifyTuning(int tuning_file, std::vector<WordIndex> &out) : indices_(out) {
indices_.clear();
StringPiece line;
std::size_t counter = 0;
std::vector<std::size_t> &eos = words_[util::MurmurHashNative("</s>", 4)];
for (util::FilePiece f(tuning_file); f.ReadLineOrEOF(line);) {
for (util::TokenIter<util::BoolCharacter, true> word(line, util::kSpaces); word; ++word) {
UTIL_THROW_IF(*word == "<s>" || *word == "</s>", FormatLoadException, "Illegal word in tuning data: " << *word);
words_[util::MurmurHashNative(word->data(), word->size())].push_back(counter++);
}
eos.push_back(counter++);
}
// Also get <s>
indices_.resize(counter + 1);
words_[util::MurmurHashNative("<s>", 3)].push_back(indices_.size() - 1);
}
// Apply ids as they come out of MergeVocab if they match.
void Add(WordIndex id, const StringPiece &str) {
boost::unordered_map<uint64_t, std::vector<std::size_t> >::iterator i = words_.find(util::MurmurHashNative(str.data(), str.size()));
if (i != words_.end()) {
for (std::vector<std::size_t>::iterator j = i->second.begin(); j != i->second.end(); ++j) {
indices_[*j] = id;
}
}
}
WordIndex FinishGetBOS() {
WordIndex ret = indices_.back();
indices_.pop_back();
return ret;
}
private:
// array of words in tuning data.
std::vector<WordIndex> &indices_;
// map from hash(string) to offsets in indices_.
boost::unordered_map<uint64_t, std::vector<std::size_t> > words_;
};
} // namespace
// Store information about the first iteration.
class ExtensionsFirstIteration {
public:
explicit ExtensionsFirstIteration(std::size_t instances, std::size_t models, std::size_t max_order, util::stream::Chain &extension_input, const util::stream::SortConfig &config)
: backoffs_by_instance_(new std::vector<Matrix>(instances)), sort_(extension_input, config) {
// Initialize all the backoff matrices to zeros.
for (std::vector<Matrix>::iterator i = backoffs_by_instance_->begin(); i != backoffs_by_instance_->end(); ++i) {
*i = Matrix::Zero(models, max_order);
}
}
Matrix &WriteBackoffs(std::size_t instance) {
return (*backoffs_by_instance_)[instance];
}
// Get the backoff all the way to unigram for a particular tuning instance and model.
Accum FullBackoff(std::size_t instance, std::size_t model) const {
return (*backoffs_by_instance_)[instance](model, 0);
}
void Merge(std::size_t lazy_memory) {
sort_.Merge(lazy_memory);
lazy_memory_ = lazy_memory;
}
void Output(util::stream::Chain &chain) {
sort_.Output(chain, lazy_memory_);
chain >> ApplyBackoffs(backoffs_by_instance_);
}
private:
class ApplyBackoffs {
public:
explicit ApplyBackoffs(boost::shared_ptr<std::vector<Matrix> > backoffs_by_instance)
: backoffs_by_instance_(backoffs_by_instance) {}
void Run(const util::stream::ChainPosition &position) {
// There should always be tuning instances.
const std::vector<Matrix> &backoffs = *backoffs_by_instance_;
assert(!backoffs.empty());
uint8_t max_order = backoffs.front().cols();
for (util::stream::Stream stream(position); stream; ++stream) {
InitialExtension &ini = *reinterpret_cast<InitialExtension*>(stream.Get());
assert(ini.order > 1); // If it's an extension, it should be higher than a unigram.
if (ini.order != max_order) {
ini.ext.ln_prob += backoffs[ini.ext.instance](ini.ext.model, ini.order - 1);
}
}
}
private:
boost::shared_ptr<std::vector<Matrix> > backoffs_by_instance_;
};
// Array of complete backoff matrices by instance.
// Each matrix is by model, then by order.
// Would have liked to use a tensor but it's not that well supported.
// This is a shared pointer so that ApplyBackoffs can run after this class is gone.
boost::shared_ptr<std::vector<Matrix> > backoffs_by_instance_;
// This sorts and stores all the InitialExtensions.
util::stream::Sort<InitialExtensionCompare> sort_;
std::size_t lazy_memory_;
};
Instances::Instances(int tune_file, const std::vector<StringPiece> &model_names, const InstancesConfig &config) : temp_prefix_(config.sort.temp_prefix) {
// All the memory from stack variables here should go away before merge sort of the instances.
{
util::FixedArray<ModelBuffer> models(model_names.size());
// Load tuning set and join vocabulary.
std::vector<WordIndex> vocab_sizes;
vocab_sizes.reserve(model_names.size());
util::FixedArray<int> vocab_files(model_names.size());
std::size_t max_order = 0;
for (std::vector<StringPiece>::const_iterator i = model_names.begin(); i != model_names.end(); ++i) {
models.push_back(*i);
vocab_sizes.push_back(models.back().Counts()[0]);
vocab_files.push_back(models.back().VocabFile());
max_order = std::max(max_order, models.back().Order());
}
UniversalVocab vocab(vocab_sizes);
std::vector<WordIndex> tuning_words;
WordIndex combined_vocab_size;
{
IdentifyTuning identify(tune_file, tuning_words);
combined_vocab_size = MergeVocab(vocab_files, vocab, identify);
bos_ = identify.FinishGetBOS();
}
// Setup the initial extensions storage: a chain going to a sort with a stream in the middle for writing.
util::stream::Chain extensions_chain(util::stream::ChainConfig(sizeof(InitialExtension), 2, config.extension_write_chain_mem));
util::stream::Stream extensions_write(extensions_chain.Add());
extensions_first_.reset(new ExtensionsFirstIteration(tuning_words.size(), model_names.size(), max_order, extensions_chain, config.sort));
// Populate the ContextMap from contexts to instances.
ContextMap cmap;
util::FixedArray<InstanceMatch> instances(tuning_words.size());
{
UTIL_THROW_IF2(tuning_words.empty(), "Empty tuning data");
const WordIndex eos = tuning_words.back();
std::vector<WordIndex> context;
context.push_back(bos_);
for (std::size_t i = 0; i < tuning_words.size(); ++i) {
instances.push_back(boost::ref(extensions_first_->WriteBackoffs(i)), tuning_words[i]);
for (std::size_t j = 0; j < context.size(); ++j) {
cmap[util::MurmurHashNative(&context[j], sizeof(WordIndex) * (context.size() - j))].Register(instances.back());
}
// Prepare for next word by starting a new sentence or shifting context.
if (tuning_words[i] == eos) {
context.clear();
context.push_back(bos_);
} else {
if (context.size() == max_order) {
context.erase(context.begin());
}
context.push_back(tuning_words[i]);
}
}
}
// Go through each model. Populate:
// ln_backoffs_
ln_backoffs_.resize(instances.size(), models.size());
// neg_ln_correct_sum_
neg_ln_correct_sum_.resize(models.size());
// ln_unigrams_
ln_unigrams_.resize(combined_vocab_size, models.size());
// The backoffs in extensions_first_
for (std::size_t m = 0; m < models.size(); ++m) {
std::cerr << "Processing model " << m << '/' << models.size() << ": " << model_names[m] << std::endl;
util::stream::Chains chains(models[m].Order());
for (std::size_t i = 0; i < models[m].Order(); ++i) {
// TODO: stop wasting space for backoffs of highest order.
chains.push_back(util::stream::ChainConfig(NGram<ProbBackoff>::TotalSize(i + 1), 2, config.model_read_chain_mem));
}
chains.back().ActivateProgress();
models[m].Source(chains);
for (std::size_t i = 0; i < models[m].Order(); ++i) {
chains[i] >> Renumber(vocab.Mapping(m), i + 1);
}
// Populate ln_unigrams_.
chains[0] >> ReadUnigrams(ln_unigrams_.col(m));
// Send extensions into extensions_first_ and give data to the instances about backoffs/extensions.
chains >> JointOrderCallback(m, models[m].Order() - 1, cmap, extensions_write, instances.begin());
chains >> util::stream::kRecycle;
chains.Wait(true);
neg_ln_correct_sum_(m) = 0.0;
for (InstanceMatch *i = instances.begin(); i != instances.end(); ++i) {
neg_ln_correct_sum_(m) -= i->FinishModel(m, ln_unigrams_(i->Correct(), m));
ln_backoffs_(i - instances.begin(), m) = extensions_first_->FullBackoff(i - instances.begin(), m);
}
ln_unigrams_(bos_, m) = 0; // Does not matter as long as it does not produce nans since tune_derivatives will overwrite the output.
}
extensions_write.Poison();
}
extensions_first_->Merge(config.lazy_memory);
}
Instances::~Instances() {}
// TODO: size reduction by excluding order for subsequent passes.
std::size_t Instances::ReadExtensionsEntrySize() const {
return sizeof(InitialExtension);
}
void Instances::ReadExtensions(util::stream::Chain &on) {
if (extensions_first_.get()) {
// Lazy sort and save a sorted copy to disk. TODO: cut down on record size by stripping out order information.
extensions_first_->Output(on);
extensions_first_.reset(); // Relevant data will continue to live in workers.
extensions_subsequent_.reset(new util::stream::FileBuffer(util::MakeTemp(temp_prefix_)));
on >> extensions_subsequent_->Sink();
} else {
on.SetProgressTarget(extensions_subsequent_->Size());
on >> extensions_subsequent_->Source();
}
}
// Back door.
Instances::Instances() {}
}} // namespaces
|