File size: 3,760 Bytes
da9f196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
language:
- sv
- 'no'
- da
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
- mozilla-foundation/common_voice_11_0
- mozilla-foundation/common_voice_11_0
- babelbox/babelbox_voice
- NbAiLab/NST
- NbAiLab/NPSC
- google/fleurs
- google/fleurs
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Medium Nordic
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0
      type: mozilla-foundation/common_voice_11_0
      config: sv-SE
      split: test
    metrics:
    - name: Wer
      type: wer
      value: 11.307923879152778
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: babelbox/babelbox_voice
      type: babelbox/babelbox_voice
    metrics:
    - name: Wer
      type: wer
      value: 11.307923879152778
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: NbAiLab/NST
      type: NbAiLab/NST
    metrics:
    - name: Wer
      type: wer
      value: 11.307923879152778
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: NbAiLab/NPSC
      type: NbAiLab/NPSC
    metrics:
    - name: Wer
      type: wer
      value: 11.307923879152778
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: google/fleurs
      type: google/fleurs
    metrics:
    - name: Wer
      type: wer
      value: 11.307923879152778
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium Nordic

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0, the mozilla-foundation/common_voice_11_0, the mozilla-foundation/common_voice_11_0, the babelbox/babelbox_voice, the NbAiLab/NST, the NbAiLab/NPSC, the google/fleurs, the google/fleurs and the google/fleurs datasets.
It achieves the following results on the evaluation set:
- Loss: 0.2129
- Wer: 11.3079

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer     |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.3056        | 0.1   | 1000  | 0.2670          | 99.9221 |
| 0.16          | 0.2   | 2000  | 0.2322          | 99.6640 |
| 0.1309        | 0.3   | 3000  | 0.2152          | 98.9759 |
| 0.097         | 0.4   | 4000  | 0.2112          | 100.0   |
| 0.091         | 0.5   | 5000  | 0.2094          | 99.7312 |
| 0.1098        | 0.6   | 6000  | 0.2098          | 98.6077 |
| 0.0637        | 0.7   | 7000  | 0.2148          | 98.4625 |
| 0.0718        | 0.8   | 8000  | 0.2151          | 99.8710 |
| 0.0517        | 0.9   | 9000  | 0.2175          | 97.2342 |
| 0.0465        | 1.0   | 10000 | 0.2129          | 96.3552 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2