File size: 3,760 Bytes
da9f196 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
---
language:
- sv
- 'no'
- da
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
- mozilla-foundation/common_voice_11_0
- mozilla-foundation/common_voice_11_0
- babelbox/babelbox_voice
- NbAiLab/NST
- NbAiLab/NPSC
- google/fleurs
- google/fleurs
- google/fleurs
metrics:
- wer
model-index:
- name: Whisper Medium Nordic
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: sv-SE
split: test
metrics:
- name: Wer
type: wer
value: 11.307923879152778
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: babelbox/babelbox_voice
type: babelbox/babelbox_voice
metrics:
- name: Wer
type: wer
value: 11.307923879152778
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: NbAiLab/NST
type: NbAiLab/NST
metrics:
- name: Wer
type: wer
value: 11.307923879152778
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: NbAiLab/NPSC
type: NbAiLab/NPSC
metrics:
- name: Wer
type: wer
value: 11.307923879152778
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: google/fleurs
type: google/fleurs
metrics:
- name: Wer
type: wer
value: 11.307923879152778
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium Nordic
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0, the mozilla-foundation/common_voice_11_0, the mozilla-foundation/common_voice_11_0, the babelbox/babelbox_voice, the NbAiLab/NST, the NbAiLab/NPSC, the google/fleurs, the google/fleurs and the google/fleurs datasets.
It achieves the following results on the evaluation set:
- Loss: 0.2129
- Wer: 11.3079
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-06
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.3056 | 0.1 | 1000 | 0.2670 | 99.9221 |
| 0.16 | 0.2 | 2000 | 0.2322 | 99.6640 |
| 0.1309 | 0.3 | 3000 | 0.2152 | 98.9759 |
| 0.097 | 0.4 | 4000 | 0.2112 | 100.0 |
| 0.091 | 0.5 | 5000 | 0.2094 | 99.7312 |
| 0.1098 | 0.6 | 6000 | 0.2098 | 98.6077 |
| 0.0637 | 0.7 | 7000 | 0.2148 | 98.4625 |
| 0.0718 | 0.8 | 8000 | 0.2151 | 99.8710 |
| 0.0517 | 0.9 | 9000 | 0.2175 | 97.2342 |
| 0.0465 | 1.0 | 10000 | 0.2129 | 96.3552 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|