File size: 2,421 Bytes
ceee61a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
base_model: plncmm/beto-clinical-wl-es
tags:
- generated_from_trainer
model-index:
- name: final-ft__beto-clinical-wl-es__70k-ultrasounds
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# final-ft__beto-clinical-wl-es__70k-ultrasounds
This model is a fine-tuned version of [plncmm/beto-clinical-wl-es](https://huggingface.co/plncmm/beto-clinical-wl-es) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5271
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 254 | 0.8908 |
| No log | 2.0 | 508 | 0.7526 |
| No log | 3.0 | 762 | 0.6801 |
| 0.9011 | 4.0 | 1016 | 0.6608 |
| 0.9011 | 5.0 | 1270 | 0.6265 |
| 0.9011 | 6.0 | 1524 | 0.6014 |
| 0.9011 | 7.0 | 1778 | 0.5934 |
| 0.6433 | 8.0 | 2032 | 0.5762 |
| 0.6433 | 9.0 | 2286 | 0.5650 |
| 0.6433 | 10.0 | 2540 | 0.5667 |
| 0.6433 | 11.0 | 2794 | 0.5629 |
| 0.5899 | 12.0 | 3048 | 0.5446 |
| 0.5899 | 13.0 | 3302 | 0.5390 |
| 0.5899 | 14.0 | 3556 | 0.5454 |
| 0.5899 | 15.0 | 3810 | 0.5270 |
| 0.5625 | 16.0 | 4064 | 0.5277 |
| 0.5625 | 17.0 | 4318 | 0.5387 |
| 0.5625 | 18.0 | 4572 | 0.5206 |
| 0.5625 | 19.0 | 4826 | 0.5150 |
| 0.5508 | 20.0 | 5080 | 0.5271 |
### Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
|