File size: 356 Bytes
8dd1420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import gym

from stable_baselines3 import A2C

env = gym.make("CartPole-v1")

model = A2C("MlpPolicy", env, verbose=1)
model.learn(total_timesteps=10000)

vec_env = model.get_env()
obs = vec_env.reset()
for i in range(1000):
    action, _state = model.predict(obs, deterministic=True)
    obs, reward, done, info = vec_env.step(action)
    vec_env.render()