File size: 28,024 Bytes
704a7c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5560a1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
704a7c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f53ad1f
704a7c9
5560a1b
94ae420
73ada62
 
 
 
 
704a7c9
4bc5819
 
 
 
704a7c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny
from diffusers.image_processor import VaeImageProcessor
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
from huggingface_hub.constants import HF_HUB_CACHE
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTokenizer, CLIPTextModel
import torch
import torch._dynamo
import gc
from PIL import Image as img
from PIL.Image import Image
from pipelines.models import TextToImageRequest
from torch import Generator
import time
from diffusers import DiffusionPipeline
from torchao.quantization import quantize_, int8_weight_only, fpx_weight_only
import os
os.environ['PYTORCH_CUDA_ALLOC_CONF']="expandable_segments:True"

import torch
import math
from typing import Type, Dict, Any, Tuple, Callable, Optional, Union
import ghanta 
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
from diffusers.models.attention import FeedForward
from diffusers.models.attention_processor import (
    Attention,
    AttentionProcessor,
    FluxAttnProcessor2_0,
    FusedFluxAttnProcessor2_0,
)
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
from diffusers.utils.import_utils import is_torch_npu_available
from diffusers.utils.torch_utils import maybe_allow_in_graph
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
from diffusers.models.modeling_outputs import Transformer2DModelOutput

class BasicQuantization:
    def __init__(self, bits=1):
        self.bits = bits
        self.qmin = -(2**(bits-1))
        self.qmax = 2**(bits-1) - 1

    def quantize_tensor(self, tensor):
        scale = (tensor.max() - tensor.min()) / (self.qmax - self.qmin)
        zero_point = self.qmin - torch.round(tensor.min() / scale)
        qtensor = torch.round(tensor / scale + zero_point)
        qtensor = torch.clamp(qtensor, self.qmin, self.qmax)
        return (qtensor - zero_point) * scale, scale, zero_point

class ModelQuantization:
    def __init__(self, model, bits=7):
        self.model = model
        self.quant = BasicQuantization(bits)

    def quantize_model(self):
        for name, module in self.model.named_modules():
            if isinstance(module, torch.nn.Linear):
                if hasattr(module, 'weightML'):
                    quantized_weight, _, _ = self.quant.quantize_tensor(module.weight)
                    module.weight = torch.nn.Parameter(quantized_weight)
                if hasattr(module, 'bias') and module.bias is not None:
                    quantized_bias, _, _ = self.quant.quantize_tensor(module.bias)
                    module.bias = torch.nn.Parameter(quantized_bias)


def inicializar_generador(dispositivo: torch.device, respaldo: torch.Generator = None):
    if dispositivo.type == "cpu":
        return torch.Generator(device="cpu").set_state(torch.get_rng_state())
    elif dispositivo.type == "cuda":
        return torch.Generator(device=dispositivo).set_state(torch.cuda.get_rng_state())
    else:
        if respaldo is None:
            return inicializar_generador(torch.device("cpu"))
        else:
            return respaldo

def calcular_fusion(x: torch.Tensor, info_tome: Dict[str, Any]) -> Tuple[Callable, ...]:
    alto_original, ancho_original = info_tome["size"]
    tokens_originales = alto_original * ancho_original
    submuestreo = int(math.ceil(math.sqrt(tokens_originales // x.shape[1])))
    argumentos = info_tome["args"]
    if submuestreo <= argumentos["down"]:
        ancho = int(math.ceil(ancho_original / submuestreo))
        alto = int(math.ceil(alto_original / submuestreo))
        radio = int(x.shape[1] * argumentos["ratio"])

        if argumentos["generator"] is None:
            argumentos["generator"] = inicializar_generador(x.device)
        elif argumentos["generator"].device != x.device:
            argumentos["generator"] = inicializar_generador(x.device, respaldo=argumentos["generator"])

        usar_aleatoriedad = argumentos["rando"]
        fusion, desfusion = ghanta.emparejamiento_suave_aleatorio_2d(
            x, ancho, alto, argumentos["sx"], argumentos["sy"], radio,
            sin_aleatoriedad=not usar_aleatoriedad, generador=argumentos["generator"]
        )
    else:
        fusion, desfusion = (hacer_nada, hacer_nada)
    fusion_a, desfusion_a = (fusion, desfusion) if argumentos["m1"] else (hacer_nada, hacer_nada)
    fusion_c, desfusion_c = (fusion, desfusion) if argumentos["m2"] else (hacer_nada, hacer_nada)
    fusion_m, desfusion_m = (fusion, desfusion) if argumentos["m3"] else (hacer_nada, hacer_nada)
    return fusion_a, fusion_c, fusion_m, desfusion_a, desfusion_c, desfusion_m

@torch.compile
@maybe_allow_in_graph
class FluxSingleTransformerBlock(nn.Module):

    def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
        super().__init__()
        self.mlp_hidden_dim = int(dim * mlp_ratio)

        self.norm = AdaLayerNormZeroSingle(dim)
        self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
        self.act_mlp = nn.GELU(approximate="tanh")
        self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)

        processor = FluxAttnProcessor2_0()
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=dim,
            bias=True,
            processor=processor,
            qk_norm="rms_norm",
            eps=1e-6,
            pre_only=True,
        )

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        temb: torch.FloatTensor,
        image_rotary_emb=None,
        joint_attention_kwargs=None,
        tinfo: Dict[str, Any] = None,
    ):
        if tinfo is not None:
            m_a, m_c, mom, u_a, u_c, u_m = calcular_fusion(hidden_states, tinfo)
        else:
            m_a, m_c, mom, u_a, u_c, u_m = (ghanta.hacer_nada, ghanta.hacer_nada, ghanta.hacer_nada, ghanta.hacer_nada, ghanta.hacer_nada, ghanta.hacer_nada)

        residual = hidden_states
        norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
        norm_hidden_states = m_a(norm_hidden_states)
        mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
        joint_attention_kwargs = joint_attention_kwargs or {}
        attn_output = self.attn(
            hidden_states=norm_hidden_states,
            image_rotary_emb=image_rotary_emb,
            **joint_attention_kwargs,
        )

        hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
        gate = gate.unsqueeze(1)
        hidden_states = gate * self.proj_out(hidden_states)
        hidden_states = u_a(residual + hidden_states)

        return hidden_states

@torch.compile
@maybe_allow_in_graph
class FluxTransformerBlock(nn.Module):

    def __init__(self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6):
        super().__init__()

        self.norm1 = AdaLayerNormZero(dim)

        self.norm1_context = AdaLayerNormZero(dim)

        if hasattr(F, "scaled_dot_product_attention"):
            processor = FluxAttnProcessor2_0()
        else:
            raise ValueError(
                "The current PyTorch version does not support the `scaled_dot_product_attention` function."
            )
        self.attn = Attention(
            query_dim=dim,
            cross_attention_dim=None,
            added_kv_proj_dim=dim,
            dim_head=attention_head_dim,
            heads=num_attention_heads,
            out_dim=dim,
            context_pre_only=False,
            bias=True,
            processor=processor,
            qk_norm=qk_norm,
            eps=eps,
        )

        self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")

        self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
        self.ff_context = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
        self._chunk_size = None
        self._chunk_dim = 0

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: torch.FloatTensor,
        temb: torch.FloatTensor,
        image_rotary_emb=None,
        joint_attention_kwargs=None,
        tinfo: Dict[str, Any] = None, # Add tinfo parameter
    ):
        if tinfo is not None:
            m_a, m_c, mom, u_a, u_c, u_m = calcular_fusion(hidden_states, tinfo)
        else:
            m_a, m_c, mom, u_a, u_c, u_m = (ghanta.hacer_nada, ghanta.hacer_nada, ghanta.hacer_nada, ghanta.hacer_nada, ghanta.hacer_nada, ghanta.hacer_nada)

        norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb)

        norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context(
            encoder_hidden_states, emb=temb
        )
        joint_attention_kwargs = joint_attention_kwargs or {}
        norm_hidden_states = m_a(norm_hidden_states)
        norm_encoder_hidden_states = m_c(norm_encoder_hidden_states)

        attn_output, context_attn_output = self.attn(
            hidden_states=norm_hidden_states,
            encoder_hidden_states=norm_encoder_hidden_states,
            image_rotary_emb=image_rotary_emb,
            **joint_attention_kwargs,
        )

        attn_output = gate_msa.unsqueeze(1) * attn_output
        hidden_states = u_a(attn_output) + hidden_states

        norm_hidden_states = self.norm2(hidden_states)
        norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

        norm_hidden_states = mom(norm_hidden_states)

        ff_output = self.ff(norm_hidden_states)
        ff_output = gate_mlp.unsqueeze(1) * ff_output

        hidden_states = u_m(ff_output) + hidden_states
        context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
        encoder_hidden_states = u_c(context_attn_output) + encoder_hidden_states

        norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
        norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None]

        context_ff_output = self.ff_context(norm_encoder_hidden_states)
        encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output

        return encoder_hidden_states, hidden_states

class FluxTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin):

    _supports_gradient_checkpointing = True
    _no_split_modules = ["FluxTransformerBlock", "FluxSingleTransformerBlock"]

    @register_to_config
    def __init__(
        self,
        patch_size: int = 1,
        in_channels: int = 64,
        out_channels: Optional[int] = None,
        num_layers: int = 19,
        num_single_layers: int = 38,
        attention_head_dim: int = 128,
        num_attention_heads: int = 24,
        joint_attention_dim: int = 4096,
        pooled_projection_dim: int = 768,
        guidance_embeds: bool = False,
        axes_dims_rope: Tuple[int] = (16, 56, 56),
        generator: Optional[torch.Generator] = None,
    ):
        super().__init__()
        self.out_channels = out_channels or in_channels
        self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim

        self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)

        text_time_guidance_cls = (
            CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
        )
        self.time_text_embed = text_time_guidance_cls(
            embedding_dim=self.inner_dim, pooled_projection_dim=self.config.pooled_projection_dim
        )

        self.context_embedder = nn.Linear(self.config.joint_attention_dim, self.inner_dim)
        self.x_embedder = nn.Linear(self.config.in_channels, self.inner_dim)

        self.transformer_blocks = nn.ModuleList(
            [
                FluxTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=self.config.num_attention_heads,
                    attention_head_dim=self.config.attention_head_dim,
                )
                for i in range(self.config.num_layers)
            ]
        )

        self.single_transformer_blocks = nn.ModuleList(
            [
                FluxSingleTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=self.config.num_attention_heads,
                    attention_head_dim=self.config.attention_head_dim,
                )
                for i in range(self.config.num_single_layers)
            ]
        )

        self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
        self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
        ratio: float = 0.5
        down: int = 1
        sx: int = 2
        sy: int = 2
        rando: bool = False
        m1: bool = False
        m2: bool = True
        m3: bool = False
        
        self.tinfo = {
            "size": None,
            "args": {
                "ratio": ratio,
                "down": down,
                "sx": sx,
                "sy": sy,
                "rando": rando,
                "m1": m1,
                "m2": m2,
                "m3": m3,
                "generator": generator
            }
        }
        
        self.gradient_checkpointing = False

    @property
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        processors = {}

        def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor()

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor)
                else:
                    module.set_processor(processor.pop(f"{name}.processor"))

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedFluxAttnProcessor2_0
    def fuse_qkv_projections(self):
        self.original_attn_processors = None

        for _, attn_processor in self.attn_processors.items():
            if "Added" in str(attn_processor.__class__.__name__):
                raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")

        self.original_attn_processors = self.attn_processors

        for module in self.modules():
            if isinstance(module, Attention):
                module.fuse_projections(fuse=True)

        self.set_attn_processor(FusedFluxAttnProcessor2_0())

    # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
    def unfuse_qkv_projections(self):
        if self.original_attn_processors is not None:
            self.set_attn_processor(self.original_attn_processors)

    def _set_gradient_checkpointing(self, module, value=False):
        if hasattr(module, "gradient_checkpointing"):
            module.gradient_checkpointing = value

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: torch.Tensor = None,
        pooled_projections: torch.Tensor = None,
        timestep: torch.LongTensor = None,
        img_ids: torch.Tensor = None,
        txt_ids: torch.Tensor = None,
        guidance: torch.Tensor = None,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        controlnet_block_samples=None,
        controlnet_single_block_samples=None,
        return_dict: bool = True,
        controlnet_blocks_repeat: bool = False,
    ) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
        if joint_attention_kwargs is not None:
            joint_attention_kwargs = joint_attention_kwargs.copy()
            lora_scale = joint_attention_kwargs.pop("scale", 1.0)
        else:
            lora_scale = 1.0

        if USE_PEFT_BACKEND:
            # weight the lora layers by setting `lora_scale` for each PEFT layer
            scale_lora_layers(self, lora_scale)
        else:
            if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
                logger.warning(
                    "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
                )

        hidden_states = self.x_embedder(hidden_states)
        if len(hidden_states.shape) == 4:
          self.tinfo["size"] = (hidden_states.shape[2], hidden_states.shape[3])

        timestep = timestep.to(hidden_states.dtype) * 1000
        if guidance is not None:
            guidance = guidance.to(hidden_states.dtype) * 1000
        else:
            guidance = None

        temb = (
            self.time_text_embed(timestep, pooled_projections)
            if guidance is None
            else self.time_text_embed(timestep, guidance, pooled_projections)
        )
        encoder_hidden_states = self.context_embedder(encoder_hidden_states)

        if txt_ids.ndim == 3:
            logger.warning(
                "Passing `txt_ids` 3d torch.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d torch Tensor"
            )
            txt_ids = txt_ids[0]
        if img_ids.ndim == 3:
            logger.warning(
                "Passing `img_ids` 3d torch.Tensor is deprecated."
                "Please remove the batch dimension and pass it as a 2d torch Tensor"
            )
            img_ids = img_ids[0]

        ids = torch.cat((txt_ids, img_ids), dim=0)
        image_rotary_emb = self.pos_embed(ids)

        for index_block, block in enumerate(self.transformer_blocks):
            if torch.is_grad_enabled() and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    encoder_hidden_states,
                    temb,
                    image_rotary_emb,
                    **ckpt_kwargs,
                )

            else:
                encoder_hidden_states, hidden_states = block(
                    hidden_states=hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                    joint_attention_kwargs=joint_attention_kwargs,
                )

            if controlnet_block_samples is not None:
                interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
                interval_control = int(np.ceil(interval_control))
                if controlnet_blocks_repeat:
                    hidden_states = (
                        hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
                    )
                else:
                    hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]

        hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

        for index_block, block in enumerate(self.single_transformer_blocks):
            if torch.is_grad_enabled() and self.gradient_checkpointing:

                def create_custom_forward(module, return_dict=None):
                    def custom_forward(*inputs):
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)

                    return custom_forward

                ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
                hidden_states = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(block),
                    hidden_states,
                    temb,
                    image_rotary_emb,
                    **ckpt_kwargs,
                )

            else:
                hidden_states = block(
                    hidden_states=hidden_states,
                    temb=temb,
                    image_rotary_emb=image_rotary_emb,
                    joint_attention_kwargs=joint_attention_kwargs,
                )

            if controlnet_single_block_samples is not None:
                interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
                interval_control = int(np.ceil(interval_control))
                hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
                    hidden_states[:, encoder_hidden_states.shape[1] :, ...]
                    + controlnet_single_block_samples[index_block // interval_control]
                )

        hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]

        hidden_states = self.norm_out(hidden_states, temb)
        output = self.proj_out(hidden_states)

        if USE_PEFT_BACKEND:
            unscale_lora_layers(self, lora_scale)

        if not return_dict:
            return (output,)

        return Transformer2DModelOutput(sample=output)

def load_single_file_checkpoint(
    pretrained_model_link_or_path,
    force_download=False,
    proxies=None,
    token=None,
    cache_dir=None,
    local_files_only=None,
    revision=None,
):
    import pdb; pdb.set_trace()
    if os.path.isfile(pretrained_model_link_or_path):
        pretrained_model_link_or_path = pretrained_model_link_or_path

    else:
        repo_id, weights_name = _extract_repo_id_and_weights_name(pretrained_model_link_or_path)
        pretrained_model_link_or_path = _get_model_file(
            repo_id,
            weights_name=weights_name,
            force_download=force_download,
            cache_dir=cache_dir,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
        )
    import pdb; pdb.set_trace()

    checkpoint = load_state_dict(pretrained_model_link_or_path)

    # some checkpoints contain the model state dict under a "state_dict" key
    while "state_dict" in checkpoint:
        checkpoint = checkpoint["state_dict"]

    return checkpoint


Pipeline = None
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True

# ckpt_id = "black-forest-labs/FLUX.1-schnell"
# ckpt_revision = "741f7c3ce8b383c54771c7003378a50191e9efe9" 
ckpt_id = "silentdriver/4b68f38c0b"
ckpt_revision = "36a3cf4a9f733fc5f31257099b56b304fb2eceab" 
def empty_cache():
    gc.collect()
    torch.cuda.empty_cache()
    torch.cuda.reset_max_memory_allocated()
    torch.cuda.reset_peak_memory_stats()

def load_pipeline() -> Pipeline:    
    empty_cache()

    
    dtype, device = torch.bfloat16, "cuda"

    import pdb; pdb.set_trace()
    # t5_path = os.path.join(HF_HUB_CACHE, "models--manbeast3b--t5-v1_1-xxl-encoder-q8/snapshots/59c6c9cb99dcea42067f32caac3ea0836ef4c548/t5-v1_1-xxl-encoder-Q8_0.gguf")
    # # config_path = os.path.join(HF_HUB_CACHE, "models--black-forest--labs/FLUX.1-schnell/snapshots/741f7c3ce8b383c54771c7003378a50191e9efe9/text_encoder_2/config.json")
    # config_path = os.path.join(HF_HUB_CACHE, "models--black-forest-labs--FLUX.1-schnell/snapshots/741f7c3ce8b383c54771c7003378a50191e9efe9/")
    # ckpt_t5 = load_single_file_checkpoint(t5_path,local_files_only=True)
    # print("the file is loaded")
    
    text_encoder_2 = T5EncoderModel.from_pretrained(
        "silentdriver/aadb864af9", revision = "060dabc7fa271c26dfa3fd43c16e7c5bf3ac7892", torch_dtype=torch.bfloat16
    ).to(memory_format=torch.channels_last)

    
    
    vae = AutoencoderTiny.from_pretrained("silentdriver/7815792fb4", revision="bdb7d88ebe5a1c6b02a3c0c78651dd57a403fdf5", torch_dtype=dtype)
    
    path = os.path.join(HF_HUB_CACHE, "models--silentdriver--7d92df966a/snapshots/add1b8d9a84c728c1209448c4a695759240bad3c")
    generator = torch.Generator(device=device)
    model = FluxTransformer2DModel.from_pretrained(path, torch_dtype=dtype, use_safetensors=False, generator= generator).to(memory_format=torch.channels_last)
    torch.backends.cudnn.benchmark = True
    torch.backends.cudnn.deterministic = False
    # model = torch.compile(model, mode="max-autotune-no-cudagraphs")
    # model = torch.compile(model,backend="aot_eager")
    vae = torch.compile(vae)
    pipeline = DiffusionPipeline.from_pretrained(
        ckpt_id,
        vae=vae,
        revision=ckpt_revision,
        transformer=model,
        text_encoder_2=text_encoder_2,
        torch_dtype=dtype,
        ).to(device)
    pipeline.vae.requires_grad_(False)
    pipeline.transformer.requires_grad_(False)
    pipeline.text_encoder_2.requires_grad_(False)
    pipeline.text_encoder.requires_grad_(False)

    # pipeline.enable_sequential_cpu_offload(exclude=["transformer"])
    
    for _ in range(3):
        pipeline(prompt="blah blah waah waah oneshot oneshot gang gang", width=1024, height=1024, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256)
    
    empty_cache()
    return pipeline


@torch.no_grad()
def infer(request: TextToImageRequest, pipeline: Pipeline, generator: Generator) -> Image:
    image=pipeline(request.prompt,generator=generator, guidance_scale=0.0, num_inference_steps=4, max_sequence_length=256, height=request.height, width=request.width, output_type="pil").images[0]
    return image