File size: 2,673 Bytes
7303468 f452055 7303468 f452055 c222a22 91340e3 c222a22 7303468 f452055 7303468 9529a7a 7303468 91340e3 c222a22 7303468 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
license: bsd-3-clause
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: CommitPredictorT5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CommitPredictorT5
This model is a fine-tuned version of [Salesforce/codet5-base-multi-sum](https://huggingface.co/Salesforce/codet5-base-multi-sum) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4965
- Rouge1: 0.0001
- Rouge2: 0.0
- Rougel: 0.0001
- Rougelsum: 0.0001
- Gen Len: 1.0
- Bleu: 0.0003
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bleu |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|
| 3.2251 | 1.0 | 837 | 2.6716 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
| 2.6363 | 2.0 | 1674 | 2.5424 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
| 2.4269 | 3.0 | 2511 | 2.4765 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
| 2.2842 | 4.0 | 3348 | 2.4356 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
| 2.1366 | 5.0 | 4185 | 2.4353 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
| 2.0199 | 6.0 | 5022 | 2.4261 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 0.0003 |
| 1.9309 | 7.0 | 5859 | 2.4334 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
| 1.8353 | 8.0 | 6696 | 2.4361 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
| 1.7459 | 9.0 | 7533 | 2.4576 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
| 1.6658 | 10.0 | 8370 | 2.4634 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
| 1.594 | 11.0 | 9207 | 2.4965 | 0.0001 | 0.0 | 0.0001 | 0.0001 | 1.0 | 0.0003 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2
|