File size: 2,673 Bytes
7303468
 
 
 
f452055
 
 
7303468
 
 
 
 
 
 
 
 
 
 
f452055
c222a22
91340e3
 
 
 
 
c222a22
7303468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f452055
 
7303468
 
 
9529a7a
7303468
 
 
91340e3
 
c222a22
 
 
 
 
 
 
 
 
 
 
7303468
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: bsd-3-clause
tags:
- generated_from_trainer
metrics:
- rouge
- bleu
model-index:
- name: CommitPredictorT5
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CommitPredictorT5

This model is a fine-tuned version of [Salesforce/codet5-base-multi-sum](https://huggingface.co/Salesforce/codet5-base-multi-sum) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.4965
- Rouge1: 0.0001
- Rouge2: 0.0
- Rougel: 0.0001
- Rougelsum: 0.0001
- Gen Len: 1.0
- Bleu: 0.0003

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bleu   |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|:------:|
| 3.2251        | 1.0   | 837  | 2.6716          | 0.0    | 0.0    | 0.0    | 0.0       | 1.0     | 0.0003 |
| 2.6363        | 2.0   | 1674 | 2.5424          | 0.0    | 0.0    | 0.0    | 0.0       | 1.0     | 0.0003 |
| 2.4269        | 3.0   | 2511 | 2.4765          | 0.0    | 0.0    | 0.0    | 0.0       | 1.0     | 0.0003 |
| 2.2842        | 4.0   | 3348 | 2.4356          | 0.0    | 0.0    | 0.0    | 0.0       | 1.0     | 0.0003 |
| 2.1366        | 5.0   | 4185 | 2.4353          | 0.0001 | 0.0    | 0.0001 | 0.0001    | 1.0     | 0.0003 |
| 2.0199        | 6.0   | 5022 | 2.4261          | 0.0    | 0.0    | 0.0    | 0.0       | 1.0     | 0.0003 |
| 1.9309        | 7.0   | 5859 | 2.4334          | 0.0001 | 0.0    | 0.0001 | 0.0001    | 1.0     | 0.0003 |
| 1.8353        | 8.0   | 6696 | 2.4361          | 0.0001 | 0.0    | 0.0001 | 0.0001    | 1.0     | 0.0003 |
| 1.7459        | 9.0   | 7533 | 2.4576          | 0.0001 | 0.0    | 0.0001 | 0.0001    | 1.0     | 0.0003 |
| 1.6658        | 10.0  | 8370 | 2.4634          | 0.0001 | 0.0    | 0.0001 | 0.0001    | 1.0     | 0.0003 |
| 1.594         | 11.0  | 9207 | 2.4965          | 0.0001 | 0.0    | 0.0001 | 0.0001    | 1.0     | 0.0003 |


### Framework versions

- Transformers 4.25.1
- Pytorch 1.13.0+cu117
- Datasets 2.7.1
- Tokenizers 0.13.2