meditron-70b-chat / README.md
malhajar's picture
Update README.md
481da13 verified
|
raw
history blame
1.81 kB
metadata
language:
  - en
tags:
  - Medicine
datasets:
  - malhajar/alpaca-gpt4-tr
license: llama2
base_model: epfl-llm/meditron-70b

Model Card for Model ID

meditron-7b-chat is a finetuned version of epfl-llm/meditron-70b using SFT Training on the Alpaca Dataset. This model can answer information about different excplicit ideas in medicine (see epfl-llm/meditron-70b for more info)

Model Description

Prompt Template

### Instruction:

<prompt> (without the <>)

### Response:

How to Get Started with the Model

Use the code sample provided in the original post to interact with the model.

from transformers import AutoTokenizer,AutoModelForCausalLM
 
model_id = "malhajar/meditron-70b-chat"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                             device_map="auto",
                                             torch_dtype=torch.float16,
                                             revision="main")

tokenizer = AutoTokenizer.from_pretrained(model_id)

question: "what is tract infection?"
# For generating a response
prompt = '''
### Instruction:
{question} 

### Response:'''
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
output = model.generate(inputs=input_ids,max_new_tokens=512,pad_token_id=tokenizer.eos_token_id,top_k=50, do_sample=True,
        top_p=0.95)
response = tokenizer.decode(output[0])

print(response)