metadata
language:
- en
tags:
- sequential-recommendation
- direct-recommendation
- explanation-generation
- text2text-generation
license: mit
datasets:
- amazon_us_reviews
metrics:
- NDCG
- HR
- MAE
- BLUE
- ROUGE
widget:
- text: |-
I find the purchase history list of user_823 :
5255 -> 3001 -> 3771 -> 2973
I wonder what is the next item to recommend to the user . Can you help me decide ?
example_title: Sequential Recommendation
- text: >-
Pick the most suitable item from the following list and recommend to
user_182 :
5871 , 3575 , 6355 , 3665 , 7968 , 1054 , 11837 , 9031 , 2643 , 3125 , 11476 , 1529 , 6300 , 11755 , 9410 , 1578 , 5953 , 5042 , 10881 , 2221 , 11286 , 10458 , 2081 , 3722 , 10581 , 5879 , 1780 , 7411 , 5202 , 2082 , 82 , 8131 , 77 , 8097 , 1053 , 9946 , 1341 , 4508 , 2613 , 629 , 4869 , 9833 , 7076 , 6178 , 6679 , 6650 , 472 , 8821 , 4005 , 4184 , 2866 , 4988 , 10759 , 6358 , 4137 , 790 , 5390 , 9330 , 3691 , 2667 , 5620 , 11982 , 4799 , 10062 , 4278 , 4530 , 7944 , 10225 , 1766 , 6657 , 11371 , 305 , 1091 , 7144 , 1869 , 744 , 295 , 91 , 6947 , 9290 , 2977 , 11206 , 1677 , 7812 , 1159 , 1128 , 8762 , 5795 , 8061 , 9639 , 6161 , 2142 , 8124 , 5316 , 10425 , 12097 , 476 , 5710 , 1802 , 8969
example_title: Direct Recommendation
- text: >-
Based on the feature word shampoo , generate an explanation for user_837
about this product : Dove Nourishing Oil Shampoo, 25.4 Ounce
example_title: Explanation Generation
P5 (Beauty Small)
Recommendation as Language Processing: A Unified Pretrain, Personalized Prompt & Predict Paradigm