File size: 8,434 Bytes
392ee77 f16545e a819667 b72fa5a f16545e 0002666 9b67e48 bee8c0f 9b67e48 0002666 f16545e 392ee77 a276bc9 098aa7e a276bc9 098aa7e a276bc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
---
language:
- lat
- fra
- spa
- multilingual
license: cc-by-nc-4.0
tags:
- text # Example: audio
- named entity recognition
- roberta
- historical languages
- precision # Example: wer. Use metric id from https://hf.co/metrics
- recall
model-index:
- name: roberta-multilingual-medieval-ner
results:
- task:
type: named entity recognition # Required. Example: automatic-speech-recognition
metrics:
- type: precision
value: 98.01
- type: Recall
value: 97.08
inference:
parameters:
aggregation_strategy: 'simple'
widget:
- text: "In nomine sanctæ et individuæ Trinitatis. Ego Guido, Dei gratia Cathalaunensis episcopus, propter inevitabilem temporum mutationem et casum decedentium quotidie personarum, necesse habemus litteris annotare quod dampnosa delere non possit oblivio. Eapropter notum fieri volumus tam futuris quam presentibus quod, pro remedio animæ meæ et predecessorum nostrorum, abbati et fratribus de Insula altare de Hattunmaisnil dedimus et perpetuo habendum concessimus, salvis custumiis nostris et archidiaconi loci illius. Ne hoc ergo malignorum hominum perversitate aut temporis alteratur incommodo presentem paginam sigilli nostri impressione firmavimus, testibus subnotatis : S. Raynardy capellani, Roberti Armensis, Mathei de Waisseio, Michaeli decani, Hugonis de Monasterio, Hervaudi de Panceio. Data per manum Gerardi cancellarii, anno ab incarnatione Domini millesimo centesimo septuagesimo octavo. "
---
## Model Details
This is a Fine-tuned version of the multilingual Roberta model on medieval charters. The model is intended to recognize Locations and persons in medieval texts
in a Flat and nested manner. The train dataset entails 8k annotated texts on medieval latin, french and Spanish from a period ranging from 11th to 15th centuries.
### How to Get Started with the Model
The model is intended to be used in a simple way manner:
```python
import torch
from transformers import pipeline
pipe = pipeline("token-classification", model="magistermilitum/roberta-multilingual-medieval-ner")
results = list(map(pipe, list_of_sentences))
results =[[[y["entity"],y["word"], y["start"], y["end"]] for y in x] for x in results]
print(results)
```
### Model Description
The following snippet can transforms model inferences to CONLL format using the BIO format.
```python
class TextProcessor:
def __init__(self, filename):
self.filename = filename
self.sent_detector = nltk.data.load("tokenizers/punkt/english.pickle") #sentence tokenizer
self.sentences = []
self.new_sentences = []
self.results = []
self.new_sentences_token_info = []
self.new_sentences_bio = []
self.BIO_TAGS = []
self.stripped_BIO_TAGS = []
def read_file(self):
#Reading a txt file with one document per line.
with open(self.filename, 'r') as f:
text = f.read()
self.sentences = self.sent_detector.tokenize(text.strip())
def process_sentences(self): #We split long sentences as encoder has a 256 max-lenght. Sentences with les of 40 words will be merged.
for sentence in self.sentences:
if len(sentence.split()) < 40 and self.new_sentences:
self.new_sentences[-1] += " " + sentence
else:
self.new_sentences.append(sentence)
def apply_model(self, pipe):
self.results = list(map(pipe, self.new_sentences))
self.results=[[[y["entity"],y["word"], y["start"], y["end"]] for y in x] for x in self.results]
def tokenize_sentences(self):
for n_s in self.new_sentences:
tokens=n_s.split() # Basic tokenization
token_info = []
# Initialize a variable to keep track of character index
char_index = 0
# Iterate through the tokens and record start and end info
for token in tokens:
start = char_index
end = char_index + len(token) # Subtract 1 for the last character of the token
token_info.append((token, start, end))
char_index += len(token) + 1 # Add 1 for the whitespace
self.new_sentences_token_info.append(token_info)
def process_results(self): #merge subwords and BIO tags
for result in self.results:
merged_bio_result = []
current_word = ""
current_label = None
current_start = None
current_end = None
for entity, subword, start, end in result:
if subword.startswith("▁"):
subword = subword[1:]
merged_bio_result.append([current_word, current_label, current_start, current_end])
current_word = "" ; current_label = None ; current_start = None ; current_end = None
if current_start is None:
current_word = subword ; current_label = entity ; current_start = start+1 ; current_end= end
else:
current_word += subword ; current_end = end
if current_word:
merged_bio_result.append([current_word, current_label, current_start, current_end])
self.new_sentences_bio.append(merged_bio_result[1:])
def match_tokens_with_entities(self): #match BIO tags with tokens
for i,ss in enumerate(self.new_sentences_token_info):
for word in ss:
for ent in self.new_sentences_bio[i]:
if word[1]==ent[2]:
if ent[1]=="L-PERS":
self.BIO_TAGS.append([word[0], "I-PERS", "B-LOC"])
break
else:
if "LOC" in ent[1]:
self.BIO_TAGS.append([word[0], "O", ent[1]])
else:
self.BIO_TAGS.append([word[0], ent[1], "O"])
break
else:
self.BIO_TAGS.append([word[0], "O", "O"])
def separate_dots_and_comma(self): #optional
signs=[",", ";", ":", "."]
for bio in self.BIO_TAGS:
if any(bio[0][-1]==sign for sign in signs) and len(bio[0])>1:
self.stripped_BIO_TAGS.append([bio[0][:-1], bio[1], bio[2]]);
self.stripped_BIO_TAGS.append([bio[0][-1], "O", "O"])
else:
self.stripped_BIO_TAGS.append(bio)
def save_BIO(self):
with open('output_BIO_a.txt', 'w', encoding='utf-8') as output_file:
output_file.write("TOKEN\tPERS\tLOCS\n"+"\n".join(["\t".join(x) for x in self.stripped_BIO_TAGS]))
# Usage:
processor = TextProcessor('my_docs_file.txt')
processor.read_file()
processor.process_sentences()
processor.apply_model(pipe)
processor.tokenize_sentences()
processor.process_results()
processor.match_tokens_with_entities()
processor.separate_dots_and_comma()
processor.save_BIO()
```
- **Developed by:** [Sergio Torres Aguilar]
- **Model type:** [XLM-Roberta]
- **Language(s) (NLP):** [Medieval Latin, Spanish, French]
- **Finetuned from model [optional]:** [Named Entity Recognition]
### Direct Use
A sentence as : "Ego Radulfus de Francorvilla miles, notum facio tam presentibus cum futuris quod, cum Guillelmo Bateste militi de Miliaco"
Will be annotated in BIO format as:
```python
('Ego', 'O', 'O')
('Radulfus', 'B-PERS')
('de', 'I-PERS', 'O')
('Francorvilla', 'I-PERS', 'B-LOC')
('miles', 'O')
(',', 'O', 'O')
('notum', 'O', 'O')
('facio', 'O', 'O')
('tam', 'O', 'O')
('presentibus', 'O', 'O')
('quam', 'O', 'O')
('futuris', 'O', 'O')
('quod', 'O', 'O')
(',', 'O', 'O')
('cum', 'O', 'O')
('Guillelmo', 'B-PERS', 'O')
('Bateste', 'I-PERS', 'O')
('militi', 'O', 'O')
('de', 'O', 'O')
('Miliaco', 'O', 'B-LOC')
```
### Training Procedure
The model was fine-tuned during 5 epoch on the XML-Roberta-Large using a 5e-5 Lr and a batch size of 16.
**BibTeX:**
```bibtex
@inproceedings{aguilar2022multilingual,
title={Multilingual Named Entity Recognition for Medieval Charters Using Stacked Embeddings and Bert-based Models.},
author={Aguilar, Sergio Torres},
booktitle={Proceedings of the second workshop on language technologies for historical and ancient languages},
pages={119--128},
year={2022}
}
```
## Model Card Contact
[sergio.torres@uni.lu]
|