File size: 1,141 Bytes
e5540a2
 
 
0778dbe
e5540a2
 
 
0778dbe
e5540a2
0778dbe
e5540a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0778dbe
e5540a2
 
 
 
 
 
 
0778dbe
e5540a2
0778dbe
e5540a2
0778dbe
e5540a2
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
tags:
- text-classification
- sentiment-analysis
language:
- en
widget:
- text: "I love this product! One of my best purchases this year."
datasets:
- madmancity/revmlc
---


## Validation Metrics

- Loss: 0.595
- Accuracy: 0.789
- Macro F1: 0.575
- Micro F1: 0.789
- Weighted F1: 0.763
- Macro Precision: 0.630
- Micro Precision: 0.789
- Weighted Precision: 0.775
- Macro Recall: 0.588
- Micro Recall: 0.789
- Weighted Recall: 0.789


## Usage

You can use cURL to access this model:

```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love this product! One of my best purchases this year."}' https://api-inference.huggingface.co/models/madmancity/revmlc
```

Or Python API:

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("madmancity/revmlc", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("madmancity/revmlc", use_auth_token=True)

inputs = tokenizer("I love this product! One of my best purchases this year.", return_tensors="pt")

outputs = model(**inputs)
```