File size: 7,713 Bytes
b51625d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c24dde2
b51625d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import math
from typing import List, Optional
import json
import torch
import torchvision

from threading import Thread
from copy import deepcopy
from PIL import Image
from transformers import AutoProcessor, Qwen2PreTrainedModel, Qwen2ForCausalLM, TextIteratorStreamer
from .processing_mplugowl3 import mPLUGOwl3Processor
from .image_processing_mplugowl3 import mPLUGOwl3ImageProcessor
from .configuration_mplugowl3 import mPLUGOwl3Config
# from .modeling_navit_siglip import SiglipVisionTransformer
from transformers.models.siglip.modeling_siglip import SiglipVisionTransformer
from .x_sdpa import ScaleDotProductAttention
from .modeling_hyper_qwen2 import HyperQwen2ForCausalLM
from torch import nn


class mPLUGOwl3PreTrainedModel(Qwen2PreTrainedModel):
    config_class = mPLUGOwl3Config


class mPLUGOwl3Model(mPLUGOwl3PreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.language_model = HyperQwen2ForCausalLM(config)
        self.vision_model = self.init_vision_module()
        self.vision_dim = self.vision_model.embed_dim
        self.embed_dim = self.language_model.config.hidden_size
        self.vision2text_model = nn.Linear(self.vision_dim, self.embed_dim)
        self.processor = None

        self.terminators = ['<|im_end|>', '<|endoftext|>']

    def init_vision_module(self):
       
        self.config.vision_config._attn_implementation = self.config.vision_config._attn_implementation
        model = SiglipVisionTransformer(self.config.vision_config)

        setattr(model, 'embed_dim', model.embeddings.embed_dim)
        setattr(model, 'patch_size', model.embeddings.patch_size)
        return model


    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        self.language_model.embed_tokens = value

    def get_output_embeddings(self):
        return self.language_model.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.language_model.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.language_model = decoder

    def get_decoder(self):
        return self.language_model

    def forward_image(self, pixel_values):
        if pixel_values is None:
            return None
        dtype = self.language_model.model.embed_tokens.weight.dtype
        with torch.inference_mode():
            image_embeds = self.vision_model(pixel_values.to(dtype), output_hidden_states=True).hidden_states[-2]
        
        if self.vision2text_model is not None:
            image_embeds = self.vision2text_model(image_embeds)
        else:
            pass
     
        return image_embeds

    def forward(self, pixel_values=None, **kwargs):
        image_embeds = self.forward_image(pixel_values)
        
        return self.language_model(
            image_embeds=image_embeds,
            **kwargs
        )
    
    def _decode(self, input_ids, image_embeds, media_offset, tokenizer, attention_mask, decode_text=False, **kwargs):
        terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
        output = self.language_model.generate(
            input_ids=input_ids,
            image_embeds=image_embeds,
            media_offset=media_offset,
            pad_token_id=0,
            eos_token_id=terminators,
            attention_mask=attention_mask,
            **kwargs
        )
        
        output = output[:,input_ids.shape[1]:]
        if decode_text:
            return self._decode_text(output, tokenizer)
        return output

    def _decode_stream(self, input_ids, image_embeds, media_offset, tokenizer, **kwargs):
        terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
        streamer = TextIteratorStreamer(tokenizer=tokenizer)
        generation_kwargs = {
            'input_ids': input_ids,
            'image_embeds': image_embeds,
            'media_offset': media_offset,
            'pad_token_id': 0,
            'eos_token_id': terminators,
            'streamer': streamer
        }
        generation_kwargs.update(kwargs)

        thread = Thread(target=self.language_model.generate, kwargs=generation_kwargs)
        thread.start()
    
        return streamer

    def _decode_text(self, result_ids, tokenizer):
        terminators = [tokenizer.convert_tokens_to_ids(i) for i in self.terminators]
        result_text = []
        for result in result_ids:
            result = result[result != 0]
            if result[-1] in terminators:
                result = result[:-1]
            result_text.append(tokenizer.decode(result).strip())
        return result_text

    def init_processor(self, tokenizer):
        ip = mPLUGOwl3ImageProcessor(image_size=384)
        self.processor = mPLUGOwl3Processor(image_processor=ip, tokenizer=tokenizer)
        processor = self.processor
        return processor

    def generate(
        self,
        input_ids=None,
        pixel_values=None,
        media_offset=None,
        attention_mask=None,
        tokenizer=None,
        stream=False,
        decode_text=False,
        **kwargs
    ):
        assert input_ids is not None

        with torch.inference_mode():
            image_embeds = self.forward_image(pixel_values)

            if stream:
                result = self._decode_stream(input_ids=input_ids, image_embeds=image_embeds, media_offset=media_offset, tokenizer=tokenizer, **kwargs)
            else:
                result = self._decode(input_ids=input_ids, image_embeds=image_embeds, media_offset=media_offset, tokenizer=tokenizer, attention_mask=attention_mask, decode_text=decode_text, **kwargs)
        
        return result

    def chat(
        self,
        images,
        videos,
        messages,
        tokenizer,
        processor=None,
        max_new_tokens=2048,
        min_new_tokens=0,
        sampling=True,
        max_inp_length=8192,
        system_prompt='',
        stream=False,
        max_slice_nums=None,
        use_image_id=None,
        **kwargs
    ):
        cut_flag = kwargs.get('kwargs', True)
        if processor is None:
            if self.processor is None:
                processor = self.init_processor(tokenizer)
            else:
                processor = self.processor
        inputs = processor(messages, images=images, videos=videos, cut_enable=cut_flag)
        inputs.to('cuda')
        inputs.update({
            'tokenizer': tokenizer,
            'max_new_tokens': max_new_tokens,
            # 'stream':True,
        })

        if sampling:
            generation_config = {
                "top_p": 0.8,
                "top_k": 100,
                "temperature": 0.7,
                "do_sample": True,
                # "repetition_penalty": 1.05
            }
        else:
            generation_config = {
                "num_beams": 3,
                # "repetition_penalty": 1.2,
            }
            
        if min_new_tokens > 0:
            generation_config['min_new_tokens'] = min_new_tokens

        generation_config.update(
            (k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
        )
        with torch.inference_mode():
            res = self.generate(
                **inputs,
                stream=stream,
                decode_text=True,
                **generation_config
            )
        
        if stream:
            def stream_gen():
                for text in res:
                    for term in self.terminators:
                        text = text.replace(term, '')
                    yield text
            return stream_gen()

        else:
            answer = res[0]
            return answer