File size: 2,270 Bytes
fb7c06e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
base_model: mHossain/bengali_pos_v1_400000
tags:
- generated_from_trainer
datasets:
- pos_tag_100k
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bengali_pos_v1_500000
  results:
  - task:
      name: Token Classification
      type: token-classification
    dataset:
      name: pos_tag_100k
      type: pos_tag_100k
      config: conll2003
      split: validation
      args: conll2003
    metrics:
    - name: Precision
      type: precision
      value: 0.7579696797959762
    - name: Recall
      type: recall
      value: 0.7590989712664066
    - name: F1
      type: f1
      value: 0.7585339052142781
    - name: Accuracy
      type: accuracy
      value: 0.8206361113872795
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bengali_pos_v1_500000

This model is a fine-tuned version of [mHossain/bengali_pos_v1_400000](https://huggingface.co/mHossain/bengali_pos_v1_400000) on the pos_tag_100k dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6169
- Precision: 0.7580
- Recall: 0.7591
- F1: 0.7585
- Accuracy: 0.8206

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.6277        | 1.0   | 22500 | 0.6102          | 0.7441    | 0.7474 | 0.7458 | 0.8109   |
| 0.5143        | 2.0   | 45000 | 0.5998          | 0.7549    | 0.7561 | 0.7555 | 0.8183   |
| 0.4392        | 3.0   | 67500 | 0.6169          | 0.7580    | 0.7591 | 0.7585 | 0.8206   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0