File size: 2,268 Bytes
b6d4584 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
base_model: mHossain/bengali_pos_v1_200000
tags:
- generated_from_trainer
datasets:
- pos_tag_100k
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bengali_pos_v1_300000
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: pos_tag_100k
type: pos_tag_100k
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.7824197234815842
- name: Recall
type: recall
value: 0.7854805341357909
- name: F1
type: f1
value: 0.783947141194579
- name: Accuracy
type: accuracy
value: 0.839060352367862
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bengali_pos_v1_300000
This model is a fine-tuned version of [mHossain/bengali_pos_v1_200000](https://huggingface.co/mHossain/bengali_pos_v1_200000) on the pos_tag_100k dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6558
- Precision: 0.7824
- Recall: 0.7855
- F1: 0.7839
- Accuracy: 0.8391
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.3708 | 1.0 | 22500 | 0.6313 | 0.7688 | 0.7733 | 0.7711 | 0.8304 |
| 0.3099 | 2.0 | 45000 | 0.6491 | 0.7770 | 0.7789 | 0.7780 | 0.8353 |
| 0.3127 | 3.0 | 67500 | 0.6558 | 0.7824 | 0.7855 | 0.7839 | 0.8391 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
|