File size: 7,338 Bytes
332190f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a7587e
332190f
 
 
 
 
 
 
 
 
 
 
 
 
8a7587e
332190f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import argparse, os, time
import torch
from diffusers import (
    AutoencoderKL,
    ControlNetModel,
    StableDiffusionControlNetPipeline,
    UNet2DConditionModel,
    UniPCMultistepScheduler,
    PNDMScheduler,
    AmusedPipeline, AmusedScheduler, VQModel, UVit2DModel
)
from transformers import AutoTokenizer, CLIPFeatureExtractor
from diffusers.pipelines.deprecated.alt_diffusion import RobertaSeriesModelWithTransformation
from diffusers.utils import load_image
from utils.mclip import *


def parse_args():
    parser = argparse.ArgumentParser(description="Generate images with M3Face.")
    parser.add_argument(
        "--prompt", 
        type=str, 
        default="This attractive woman has narrow eyes, rosy cheeks, and wears heavy makeup.",
        help="The input text prompt for image generation."
    )
    parser.add_argument(
        "--condition", 
        type=str, 
        default="mask", 
        choices=["mask", "landmark"],
        help="Use segmentation mask or facial landmarks for image generation."
    )
    parser.add_argument(
        "--condition_path", 
        type=str, 
        default=None, 
        help="Path to the condition mask/landmark image. We will generate the condition if it is not given."
    )
    parser.add_argument("--save_condition", action="store_true", help="Save the generated condition image.")
    parser.add_argument("--use_english", action="store_true", help="Use the English models.")
    parser.add_argument("--enhance_prompt", action="store_true", help="Enhance the given text prompt.")
    parser.add_argument("--num_inference_steps", type=int, default=30)
    parser.add_argument("--num_samples", type=int, default=1)
    parser.add_argument(
        "--additional_prompt", 
        type=str, 
        default="rim lighting, dslr, ultra quality, sharp focus, dof, Fujifilm XT3, crystal clear, highly detailed glossy eyes, high detailed skin, skin pores, 8K UHD"
    )
    parser.add_argument(
        "--negative_prompt", 
        type=str, 
        default="low quality, bad quality, worst quality, blurry, disfigured, ugly, immature, cartoon, painting"
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible generation.")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output/",
        help="The output directory where the results will be written.",
    )
    args = parser.parse_args()

    return args

def get_controlnet(args):
    if args.use_english:
        sd_model_name = 'runwayml/stable-diffusion-v1-5'
        controlnet_model_name = 'm3face/FaceControlNet'
        if args.condition == 'mask':
            controlnet_revision = 'segmentation-english'
        elif args.condition == 'landmark':
            controlnet_revision = 'landmark-english'
        controlnet = ControlNetModel.from_pretrained(controlnet_model_name, use_safetensors=True, revision=controlnet_revision)
        pipeline = StableDiffusionControlNetPipeline.from_pretrained(
            sd_model_name, controlnet=controlnet, use_safetensors=True, safety_checker=None
        ).to("cuda")

        pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
        pipeline.enable_model_cpu_offload()
    else:
        sd_model_name = 'BAAI/AltDiffusion-m18'
        controlnet_model_name = 'm3face/FaceControlNet'
        if args.condition == 'mask':
            controlnet_revision = 'segmentation-mlin'
        elif args.condition == 'landmark':
            controlnet_revision = 'landmark-mlin'
        vae = AutoencoderKL.from_pretrained(sd_model_name, subfolder="vae")
        unet = UNet2DConditionModel.from_pretrained(sd_model_name, subfolder="unet")
        tokenizer = AutoTokenizer.from_pretrained(sd_model_name, subfolder="tokenizer", use_fast=False)
        text_encoder = RobertaSeriesModelWithTransformation.from_pretrained(sd_model_name, subfolder="text_encoder")
        controlnet = ControlNetModel.from_pretrained(controlnet_model_name, revision=controlnet_revision)

        scheduler = PNDMScheduler.from_pretrained(
            sd_model_name,
            subfolder='scheduler',
        )
        scheduler = UniPCMultistepScheduler.from_config(scheduler.config)
        feature_extractor = CLIPFeatureExtractor.from_pretrained(
            sd_model_name,
            subfolder='feature_extractor',
        )
        pipeline = StableDiffusionControlNetPipeline(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            controlnet=controlnet,
            scheduler=scheduler,
            safety_checker=None,
            feature_extractor=feature_extractor,
        ).to('cuda')

    return pipeline


def get_muse(args):
    muse_model_name = 'm3face/FaceConditioning'
    if args.condition == 'mask':
        muse_revision = 'segmentation'
    elif args.condition == 'landmark':
        muse_revision = 'landmark'
    scheduler = AmusedScheduler.from_pretrained(muse_model_name, revision=muse_revision, subfolder='scheduler')
    vqvae = VQModel.from_pretrained(muse_model_name, revision=muse_revision, subfolder='vqvae')
    uvit2 = UVit2DModel.from_pretrained(muse_model_name, revision=muse_revision, subfolder='transformer')
    text_encoder = MultilingualCLIP.from_pretrained(muse_model_name, revision=muse_revision, subfolder='text_encoder')
    tokenizer = AutoTokenizer.from_pretrained(muse_model_name, revision=muse_revision, subfolder='tokenizer')

    pipeline = AmusedPipeline(
        vqvae=vqvae,
        tokenizer=tokenizer,
        text_encoder=text_encoder,
        transformer=uvit2,
        scheduler=scheduler
    ).to("cuda")

    return pipeline


if __name__ == '__main__':
    args = parse_args()

    # ========== set up face generation pipeline ==========
    controlnet = get_controlnet(args)

    # ========== set output directory ==========
    os.makedirs(args.output_dir, exist_ok=True)

    # ========== set random seed ==========
    if args.seed is None:
        generator = None
    else:
        generator = torch.Generator().manual_seed(args.seed)

    # ========== generation ==========
    id = int(time.time())
    if args.condition_path:
        condition = load_image(args.condition_path).resize((512, 512))
    else:
        # generate condition
        muse = get_muse(args)
        if args.condition == 'mask':
            muse_added_prompt = 'Generate face segmentation | '
        elif args.condition == 'landmark':
            muse_added_prompt = 'Generate face landmark | '
        muse_prompt = muse_added_prompt + args.prompt
        condition = muse(muse_prompt, num_inference_steps=256).images[0].resize((512, 512))
        if args.save_condition:
            condition.save(f'{args.output_dir}/{id}_condition.png')
    
    latents = torch.randn((args.num_samples, 4, 64, 64), generator=generator)
    prompt = f'{args.prompt}, {args.additional_prompt}' if args.prompt else args.additional_prompt
    images = controlnet(prompt, image=condition, num_inference_steps=args.num_inference_steps, negative_prompt=args.negative_prompt, 
                        generator=generator, latents=latents, num_images_per_prompt=args.num_samples).images

    for i, image in enumerate(images):
        image.save(f'{args.output_dir}/{id}_{i}.png')