mva_ner_2 / README.md
m-aliabbas1's picture
End of training
7b38c13
metadata
license: mit
base_model: prajjwal1/bert-tiny
tags:
  - generated_from_trainer
model-index:
  - name: mva_ner_2
    results: []

mva_ner_2

This model is a fine-tuned version of prajjwal1/bert-tiny on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0026
  • Overall Precision: 0.9873
  • Overall Recall: 0.9873
  • Overall F1: 0.9873
  • Overall Accuracy: 0.9987
  • Year F1: 1.0
  • Years Ago F1: 0.9844

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 500

Training results

Training Loss Epoch Step Validation Loss Overall Precision Overall Recall Overall F1 Overall Accuracy Year F1 Years Ago F1
0.0099 35.71 1000 0.0225 0.9625 0.9747 0.9686 0.9960 1.0 0.9612
0.0078 71.43 2000 0.0157 0.9625 0.9747 0.9686 0.9960 1.0 0.9612
0.0078 107.14 3000 0.0075 0.9873 0.9873 0.9873 0.9987 1.0 0.9844
0.0061 142.86 4000 0.0062 0.9873 0.9873 0.9873 0.9987 1.0 0.9844
0.0053 178.57 5000 0.0032 0.9873 0.9873 0.9873 0.9987 1.0 0.9844
0.0049 214.29 6000 0.0179 0.9747 0.9747 0.9747 0.9973 1.0 0.9688
0.0049 250.0 7000 0.0011 1.0 1.0 1.0 1.0 1.0 1.0
0.0034 285.71 8000 0.0064 0.9747 0.9747 0.9747 0.9973 1.0 0.9688
0.0037 321.43 9000 0.0148 0.9875 1.0 0.9937 0.9987 1.0 0.9922
0.0035 357.14 10000 0.0006 1.0 1.0 1.0 1.0 1.0 1.0
0.003 392.86 11000 0.0007 1.0 1.0 1.0 1.0 1.0 1.0
0.0028 428.57 12000 0.0032 0.9873 0.9873 0.9873 0.9987 1.0 0.9844
0.0025 464.29 13000 0.0006 1.0 1.0 1.0 1.0 1.0 1.0
0.0024 500.0 14000 0.0026 0.9873 0.9873 0.9873 0.9987 1.0 0.9844

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1