File size: 18,033 Bytes
d73369c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
"""
MERT model definition.
We largely adapt codes from:
1. https://github.com/huggingface/transformers/blob/main/src/transformers/models/hubert/modeling_hubert.py
2. https://github.com/facebookresearch/fairseq/blob/main/fairseq/models/wav2vec/wav2vec2.py
"""
from typing import Optional, Tuple, Union
from transformers.modeling_outputs import BaseModelOutput
import torch
from torch import nn
from transformers.models.hubert.modeling_hubert import (
HubertFeatureEncoder,
HubertModel,
HubertEncoderStableLayerNorm,
HubertEncoder,
HubertEncoderLayer,
HubertPositionalConvEmbedding,
HubertAttention,
HubertFeedForward,
)
try:
from nnAudio import features as nnAudioFeatures
NNAUDIO_INSTALLED=True
except:
print("WARNING: feature_extractor_cqt requires the libray 'nnAudio'")
NNAUDIO_INSTALLED=False
from .configuration_MERT import MERTConfig
class MERTFeatureProjection(nn.Module):
def __init__(self, config):
super().__init__()
self.feat_proj_layer_norm = config.feat_proj_layer_norm
self.feature_extractor_cqt = config.feature_extractor_cqt
if self.feature_extractor_cqt:
# v3 concat features
self.feature_dimension = config.conv_dim[-1] + config.feature_extractor_cqt_bins
print(f"feature dimention: {self.feature_dimension}")
else:
self.feature_dimension = config.conv_dim[-1]
if self.feat_proj_layer_norm:
self.layer_norm = nn.LayerNorm(self.feature_dimension, eps=config.layer_norm_eps)
self.projection = nn.Linear(self.feature_dimension, config.hidden_size)
self.dropout = nn.Dropout(config.feat_proj_dropout)
def forward(self, hidden_states):
# non-projected hidden states are needed for quantization
if self.feat_proj_layer_norm:
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.projection(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class MERTModel(HubertModel):
# overwrite config class
config_class = MERTConfig
base_model_prefix = "mert_model"
def __init__(
self,
config: MERTConfig,
) -> None:
"""
initialize the with the grandparent method HubertPreTrainedModel.__init__()
and modify the HuBERTModel.__init__()
"""
super(HubertModel, self).__init__(config)
self.config = config
self.feature_extractor = HubertFeatureEncoder(config)
self.feature_projection = MERTFeatureProjection(config) # replace Feature Projection for introcuing new feature
if self.config.feature_extractor_cqt:
assert NNAUDIO_INSTALLED, "ERROR: feature_extractor_cqt requires the libray 'nnAudio', try after `pip install nnAudio` "
print('initializing cqt extractor for MERT')
self.feature_extractor_cqt = nnAudioFeatures.cqt.CQT(sr=self.config.sample_rate, hop_length=self.config.sample_rate//50, fmin=32.7,
fmax=None, n_bins=self.config.feature_extractor_cqt_bins, bins_per_octave=self.config.feature_extractor_cqt_bins//7,
filter_scale=1, norm=1, window='hann', center=True,
pad_mode='constant', trainable=False,
output_format='Magnitude', verbose=True)
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
if config.do_stable_layer_norm:
assert not config.deepnorm, "must use post-layer_norm with deepnorm"
self.encoder = HubertEncoderStableLayerNorm(config)
else:
if config.deepnorm:
self.encoder = HubertEncoder_extend(config)
else:
self.encoder = HubertEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def forward(self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None) -> Union[Tuple, BaseModelOutput]:
# return super().forward(input_values, attention_mask, mask_time_indices, output_attentions, output_hidden_states, return_dict)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
extract_features = self.feature_extractor(input_values)
extract_features = extract_features.transpose(1, 2)
# add additional cqt features for transformer input
if self.config.feature_extractor_cqt:
features_cqt = self.feature_extractor_cqt(input_values).transpose(1, 2)
features_cqt = features_cqt[:,:extract_features.shape[1],:] # align shape
# # v2
# features_cqt = self.post_cqt_feature_proj(features_cqt)
# extract_features = self.feature_projection.layer_norm(extract_features) + self.feature_projection.layer_norm(features_cqt) #v2
# v3
extract_features = torch.cat([extract_features,features_cqt], 2)
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask)
hidden_states = self.feature_projection(extract_features)
hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0] # take last_hidden from encoder output
if not return_dict:
return (hidden_states,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class HubertEncoder_extend(HubertEncoder):
def __init__(self, config):
# super().__init__()
# call nn module initialization
nn.Module.__init__(self)
# super(HubertEncoder_extend, self).__init__()
self.config = config
self.pos_conv_embed = HubertPositionalConvEmbedding(config)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.ModuleList([HubertEncoderLayerExtend(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
if config.deepnorm:
import math
init_scale = math.pow(8.0 * config.num_hidden_layers, 0.25)
for name, p in self.named_parameters():
if (
"feed_forward.intermediate_dense" in name
or "feed_forward.output_dense" in name
or "out_proj" in name
or "v_proj" in name
):
p.data.div_(init_scale)
class HubertEncoderLayerExtend(HubertEncoderLayer):
def __init__(self, config):
nn.Module.__init__(self)
# super(HubertEncoderLayerExtend, self).__init__()
if config.attention_relax > 0 :
self.attention = HubertAttention_extend(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
attention_relax=config.attention_relax,
)
else:
self.attention = HubertAttention(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = HubertFeedForward(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
if config.deepnorm:
import math
self.residual_alpha = math.pow(2.0 * config.num_hidden_layers, 0.25)
else:
self.residual_alpha = 1.0
def residual_connection(self, x, residual):
'''
residual: input before f()
x: output of f(residual)
'''
return residual * self.residual_alpha + x
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
attn_residual = hidden_states
hidden_states, attn_weights, _ = self.attention(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = self.dropout(hidden_states)
# hidden_states = attn_residual + hidden_states
hidden_states = self.residual_connection(hidden_states, attn_residual)
hidden_states = self.layer_norm(hidden_states)
# hidden_states = hidden_states + self.feed_forward(hidden_states)
ffn_residual = hidden_states
hidden_states = self.feed_forward(hidden_states)
hidden_states = self.residual_connection(hidden_states, ffn_residual)
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class HubertAttention_extend(nn.Module):
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
attention_relax: float = -1.0,
):
super().__init__()
# nn.Module.__init__(self)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
if attention_relax > 0:
self.attention_relax = attention_relax
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if self.attention_relax > 0:
# => (bsz, self.num_heads, tgt_len, src_len)
# attn_weights_relax = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)/self.attention_relax
# => (bsz*self.num_heads, tgt_len, src_len)
attn_weights_relax = attn_weights / self.attention_relax
# => (bsz* self.num_heads, tgt_len, 1)
attn_max_relax = torch.max(attn_weights_relax, dim=-1, keepdim=False).unsqueeze(2)
attn_weights = (attn_weights_relax - attn_max_relax) * self.attention_relax
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned aross GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
|