librarian-bot's picture
Librarian Bot: Add base_model information to model
e272e88
|
raw
history blame
2.59 kB
metadata
language:
  - sw
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
base_model: openai/whisper-medium
model-index:
  - name: Whisper Small Swahili - Badili
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 13.0
          type: mozilla-foundation/common_voice_13_0
          config: sw
          split: test
          args: 'config: sw, split: test'
        metrics:
          - type: wer
            value: 98.40119332745073
            name: Wer

Whisper Small Swahili - Badili

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4329
  • Wer: 98.4012

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 12000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3563 0.35 1000 0.4938 100.5715
0.2853 0.69 2000 0.4143 100.7007
0.1612 1.04 3000 0.3910 100.9748
0.1399 1.38 4000 0.3762 98.4989
0.1657 1.73 5000 0.3700 90.3357
0.0818 2.08 6000 0.3775 98.0493
0.0749 2.42 7000 0.3768 97.9936
0.0637 2.77 8000 0.3822 92.9440
0.0355 3.11 9000 0.4036 93.8979
0.0299 3.46 10000 0.4141 97.9695
0.0277 3.8 11000 0.4175 98.2961
0.0147 4.15 12000 0.4329 98.4012

Framework versions

  • Transformers 4.29.0.dev0
  • Pytorch 2.0.0+cu117
  • Datasets 2.12.0
  • Tokenizers 0.13.3