File size: 44,945 Bytes
0c56232
 
 
 
 
 
 
 
b64e7e1
f4db65a
0c56232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4db65a
 
 
 
 
 
 
 
 
 
 
 
0c56232
b64e7e1
0c56232
b64e7e1
 
 
 
 
 
 
0c56232
b64e7e1
 
 
 
 
 
 
 
 
0c56232
b64e7e1
 
 
 
 
 
 
0c56232
b64e7e1
 
 
 
 
 
0c56232
b64e7e1
 
 
 
 
 
 
0c56232
 
f4db65a
0c56232
 
 
 
 
 
 
 
 
b64e7e1
0c56232
 
b64e7e1
0c56232
 
b64e7e1
0c56232
 
b64e7e1
0c56232
 
b64e7e1
0c56232
 
 
 
 
 
 
 
 
b64e7e1
0c56232
 
b64e7e1
0c56232
 
b64e7e1
0c56232
 
b64e7e1
0c56232
 
b64e7e1
0c56232
 
b64e7e1
0c56232
 
b64e7e1
0c56232
 
b64e7e1
0c56232
 
b64e7e1
0c56232
 
b64e7e1
0c56232
f4db65a
 
 
 
 
 
 
 
b64e7e1
f4db65a
 
b64e7e1
f4db65a
 
b64e7e1
f4db65a
 
b64e7e1
f4db65a
 
b64e7e1
f4db65a
 
b64e7e1
f4db65a
 
b64e7e1
f4db65a
 
b64e7e1
f4db65a
 
b64e7e1
f4db65a
 
b64e7e1
f4db65a
 
b64e7e1
f4db65a
 
b64e7e1
f4db65a
0c56232
 
f4db65a
0c56232
f4db65a
0c56232
 
 
 
 
f4db65a
0c56232
 
 
f4db65a
0c56232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b64e7e1
 
 
0c56232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b64e7e1
 
 
 
 
0c56232
 
 
 
 
 
 
b64e7e1
 
 
 
 
 
 
 
 
 
f4db65a
 
 
 
 
 
 
b64e7e1
 
 
 
 
 
 
 
 
 
 
 
0c56232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4db65a
0c56232
 
 
 
b64e7e1
0c56232
 
b64e7e1
 
 
 
0c56232
b64e7e1
 
 
 
 
f4db65a
0c56232
 
f4db65a
b64e7e1
0c56232
 
 
f4db65a
0c56232
 
 
 
b64e7e1
0c56232
 
b64e7e1
 
 
 
0c56232
b64e7e1
 
 
 
 
f4db65a
0c56232
 
f4db65a
b64e7e1
0c56232
 
 
 
 
 
b64e7e1
f4db65a
0c56232
f4db65a
b64e7e1
f4db65a
 
 
b64e7e1
0c56232
 
 
 
f4db65a
0c56232
 
 
 
 
 
 
 
b64e7e1
f4db65a
0c56232
 
 
 
f4db65a
0c56232
 
 
 
 
b64e7e1
0c56232
f4db65a
 
 
0c56232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4db65a
0c56232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4db65a
 
b64e7e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c56232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4db65a
0c56232
f4db65a
 
 
 
 
0c56232
f4db65a
0c56232
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1600000
- loss:TripletLoss
datasets: []
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
- cosine_accuracy@10
- cosine_precision@10
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@10
- dot_accuracy@10
- dot_precision@10
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@10
widget:
- source_sentence: 'search_query: pokemon card mewtwo'
  sentences:
  - 'search_document: Personal AM/FM Pocket Radio Portable VR-robot, Mini Digital
    Tuning Walkman Radio, with Rechargeable Battery, Earphone, Lock Screen for Walk/Jogging/Gym/Camping,
    VR-robot, Electronics'
  - 'search_document: Pokemon Mewtwo & Pikachu XY Evolutions TCG Card Game Decks -
    60 Cards Each, Pokemon, '
  - 'search_document: Ultra Pro Pokemon: Charizard Album, 2", Ultra Pro, '
- source_sentence: 'search_query: table runners 108 inches'
  sentences:
  - 'search_document: Sambosk Fall Buffalo Pumpkin Table Runner, Autumn Farmhouse
    Table Runners for Kitchen Dining Coffee or Indoor and Outdoor Home Parties Decor
    13 x 72 Inches SK006, Sambosk, Black White'
  - 'search_document: EYEGUARD Readers 4 Pack of Thin and Elegant Womens Reading Glasses
    with Beautiful Patterns for Ladies 1.00, EYEGUARD, Mix'
  - 'search_document: Sunfiy 4 Pack Red Satin Table Runner 12 x 108 Inch Long Table
    Runners for Wedding Birthday Parties Banquets Graduations Engagements, Sunfiy,
    Red'
- source_sentence: 'search_query: nursing shoes for women'
  sentences:
  - 'search_document: Hawkwell Women''s Lightweight Comfort Slip Resistant Nursing
    Shoes,White PU,10 M US, Hawkwell, 1923/White'
  - 'search_document: REESE''S Peanut Butter Milk Chocolate You''re Amazing Appreciation
    Candy Bars for Christmas and Holiday Season, 4.2 oz Bars, 12 Count, Reese''s, '
  - 'search_document: adidas womens Cloudfoam Pure Running Shoe, Black/Black, 7.5
    US, adidas, Black/Black/White'
- source_sentence: 'search_query: mens socks black and white'
  sentences:
  - 'search_document: Fruit of the Loom Men''s Essential 6 Pack Casual Crew Socks
    | Arch Support | Black & White, Black, Shoe Size: 6-12, Fruit of the Loom, Black'
  - 'search_document: adidas Originals Men''s Trefoil Crew Socks (6-Pair), White/Black
    Black/White, Large, (Shoe Size 6-12), adidas Originals, White/Black'
  - 'search_document: Fifty Shades of Grey, , '
- source_sentence: 'search_query: karoke set 2 microphone for adults'
  sentences:
  - 'search_document: EARISE T26 Portable Karaoke Machine Bluetooth Speaker with Wireless
    Microphone, Rechargeable PA System with FM Radio, Audio Recording, Remote Control,
    Supports TF Card/USB, Perfect for Party, EARISE, '
  - 'search_document: FunWorld Men''s Complete 3D Zombie Costume, Grey, One Size,
    Fun World, Multi'
  - 'search_document: Starion KS829-B Bluetooth Karaoke Machine l Pedestal Design
    w/Light Show l Two Karaoke Microphones, Starion, Black'
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy
      value: 0.7298125
      name: Cosine Accuracy
    - type: dot_accuracy
      value: 0.2831875
      name: Dot Accuracy
    - type: manhattan_accuracy
      value: 0.72825
      name: Manhattan Accuracy
    - type: euclidean_accuracy
      value: 0.729875
      name: Euclidean Accuracy
    - type: max_accuracy
      value: 0.729875
      name: Max Accuracy
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: pearson_cosine
      value: 0.4148003591706621
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.39973675544358156
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.37708819507475255
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.36992167570513307
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.3777862291730549
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.3707889635811508
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.3813644395159763
      name: Pearson Dot
    - type: spearman_dot
      value: 0.3817136551173837
      name: Spearman Dot
    - type: pearson_max
      value: 0.4148003591706621
      name: Pearson Max
    - type: spearman_max
      value: 0.39973675544358156
      name: Spearman Max
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@10
      value: 0.967
      name: Cosine Accuracy@10
    - type: cosine_precision@10
      value: 0.6951
      name: Cosine Precision@10
    - type: cosine_recall@10
      value: 0.6216729831257005
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8300106033542061
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9111154761904765
      name: Cosine Mrr@10
    - type: cosine_map@10
      value: 0.7758485833963215
      name: Cosine Map@10
    - type: dot_accuracy@10
      value: 0.946
      name: Dot Accuracy@10
    - type: dot_precision@10
      value: 0.6369
      name: Dot Precision@10
    - type: dot_recall@10
      value: 0.5693415261440723
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.7668657376718138
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.8754059523809526
      name: Dot Mrr@10
    - type: dot_map@10
      value: 0.6962231903502142
      name: Dot Map@10
---

# SentenceTransformer

This is a [sentence-transformers](https://www.SBERT.net) model trained on the triplets dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
<!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - triplets
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("lv12/esci-nomic-embed-text-v1_5_4")
# Run inference
sentences = [
    'search_query: karoke set 2 microphone for adults',
    'search_document: Starion KS829-B Bluetooth Karaoke Machine l Pedestal Design w/Light Show l Two Karaoke Microphones, Starion, Black',
    'search_document: EARISE T26 Portable Karaoke Machine Bluetooth Speaker with Wireless Microphone, Rechargeable PA System with FM Radio, Audio Recording, Remote Control, Supports TF Card/USB, Perfect for Party, EARISE, ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet

* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| **cosine_accuracy** | **0.7298** |
| dot_accuracy        | 0.2832     |
| manhattan_accuracy  | 0.7282     |
| euclidean_accuracy  | 0.7299     |
| max_accuracy        | 0.7299     |

#### Semantic Similarity

* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| pearson_cosine      | 0.4148     |
| **spearman_cosine** | **0.3997** |
| pearson_manhattan   | 0.3771     |
| spearman_manhattan  | 0.3699     |
| pearson_euclidean   | 0.3778     |
| spearman_euclidean  | 0.3708     |
| pearson_dot         | 0.3814     |
| spearman_dot        | 0.3817     |
| pearson_max         | 0.4148     |
| spearman_max        | 0.3997     |

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@10  | 0.967      |
| cosine_precision@10 | 0.6951     |
| cosine_recall@10    | 0.6217     |
| cosine_ndcg@10      | 0.83       |
| cosine_mrr@10       | 0.9111     |
| **cosine_map@10**   | **0.7758** |
| dot_accuracy@10     | 0.946      |
| dot_precision@10    | 0.6369     |
| dot_recall@10       | 0.5693     |
| dot_ndcg@10         | 0.7669     |
| dot_mrr@10          | 0.8754     |
| dot_map@10          | 0.6962     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### triplets

* Dataset: triplets
* Size: 1,600,000 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                            | negative                                                                           |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              | string                                                                             |
  | details | <ul><li>min: 7 tokens</li><li>mean: 11.03 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 39.86 tokens</li><li>max: 104 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 39.73 tokens</li><li>max: 159 tokens</li></ul> |
* Samples:
  | anchor                                                  | positive                                                                                                                                                                                                                                        | negative                                                                                                                                                                                                                                              |
  |:--------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>search_query: udt hydraulic fluid</code>          | <code>search_document: Triax Agra UTTO XL Synthetic Blend Tractor Transmission and Hydraulic Oil, 6,000 Hour Life, 50% Less wear, 36F Pour Point, Replaces All OEM Tractor Fluids (5 Gallon Pail), TRIAX, </code>                               | <code>search_document: Shell Rotella T5 Synthetic Blend 15W-40 Diesel Engine Oil (1-Gallon, Case of 3), Shell Rotella, </code>                                                                                                                        |
  | <code>search_query: cheetah print iphone xs case</code> | <code>search_document: iPhone Xs Case, iPhone Xs Case,Doowear Leopard Cheetah Protective Cover Shell For Girls Women,Slim Fit Anti Scratch Shockproof Soft TPU Bumper Flexible Rubber Gel Silicone Case for iPhone Xs / X-1, Ebetterr, 1</code> | <code>search_document: iPhone Xs & iPhone X Case, J.west Luxury Sparkle Bling Translucent Leopard Print Soft Silicone Phone Case Cover for Girls Women Flex Slim Design Pattern Drop Protective Case for iPhone Xs/x 5.8 inch, J.west, Leopard</code> |
  | <code>search_query: platform shoes</code>               | <code>search_document: Teva Women's Flatform Universal Platform Sandal, Black, 5 M US, Teva, Black</code>                                                                                                                                       | <code>search_document: Vans Women's Old Skool Platform Trainers, (Black/White Y28), 5 UK 38 EU, Vans, Black/White</code>                                                                                                                              |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
  ```json
  {
      "distance_metric": "TripletDistanceMetric.COSINE",
      "triplet_margin": 0.8
  }
  ```

### Evaluation Dataset

#### triplets

* Dataset: triplets
* Size: 16,000 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                           | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                             | string                                                                            |
  | details | <ul><li>min: 7 tokens</li><li>mean: 11.02 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 38.78 tokens</li><li>max: 87 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 38.81 tokens</li><li>max: 91 tokens</li></ul> |
* Samples:
  | anchor                                             | positive                                                                                                                                                                                                                         | negative                                                                                                                                |
  |:---------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------|
  | <code>search_query: hogknobz</code>                | <code>search_document: Black 2014-2015 HDsmallPARTS/LocEzy Saddlebag Mounting Hardware Knobs are replacement/compatible for Saddlebag Quick Release Pins on Harley Davidson Touring Motorcycles Theft Deterrent, LocEzy, </code> | <code>search_document: HANSWD Saddlebag Support Bars Brackets For SUZUKI YAMAHA KAWASAKI (Black), HANSWD, Black</code>                  |
  | <code>search_query: tile sticker key finder</code> | <code>search_document: Tile Sticker (2020) 2-pack - Small, Adhesive Bluetooth Tracker, Item Locator and Finder for Remotes, Headphones, Gadgets and More, Tile, </code>                                                          | <code>search_document: Tile Pro Combo (2017) - 2 Pack (1 x Sport, 1 x Style) - Discontinued by Manufacturer, Tile, Graphite/Gold</code> |
  | <code>search_query: adobe incense burner</code>    | <code>search_document: AM Incense Burner Frankincense Resin - Luxury Globe Charcoal Bakhoor Burners for Office & Home Decor (Brown), AM, Brown</code>                                                                            | <code>search_document: semli Large Incense Burner Backflow Incense Burner Holder Incense Stick Holder Home Office Decor, Semli, </code> |
* Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
  ```json
  {
      "distance_metric": "TripletDistanceMetric.COSINE",
      "triplet_margin": 0.8
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 2
- `learning_rate`: 1e-07
- `num_train_epochs`: 5
- `lr_scheduler_type`: polynomial
- `lr_scheduler_kwargs`: {'lr_end': 1e-08, 'power': 2.0}
- `warmup_ratio`: 0.05
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: 4
- `load_best_model_at_end`: True
- `gradient_checkpointing`: True
- `auto_find_batch_size`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 2
- `eval_accumulation_steps`: None
- `learning_rate`: 1e-07
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: polynomial
- `lr_scheduler_kwargs`: {'lr_end': 1e-08, 'power': 2.0}
- `warmup_ratio`: 0.05
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 4
- `dataloader_prefetch_factor`: 4
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: True
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: True
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
<details><summary>Click to expand</summary>

| Epoch  | Step | Training Loss | triplets loss | cosine_accuracy | cosine_map@10 | spearman_cosine |
|:------:|:----:|:-------------:|:-------------:|:---------------:|:-------------:|:---------------:|
| 0.0008 | 10   | 0.7505        | -             | -               | -             | -               |
| 0.0016 | 20   | 0.7499        | -             | -               | -             | -               |
| 0.0024 | 30   | 0.7524        | -             | -               | -             | -               |
| 0.0032 | 40   | 0.7486        | -             | -               | -             | -               |
| 0.004  | 50   | 0.7493        | -             | -               | -             | -               |
| 0.0048 | 60   | 0.7476        | -             | -               | -             | -               |
| 0.0056 | 70   | 0.7483        | -             | -               | -             | -               |
| 0.0064 | 80   | 0.7487        | -             | -               | -             | -               |
| 0.0072 | 90   | 0.7496        | -             | -               | -             | -               |
| 0.008  | 100  | 0.7515        | 0.7559        | 0.7263          | 0.7684        | 0.3941          |
| 0.0088 | 110  | 0.7523        | -             | -               | -             | -               |
| 0.0096 | 120  | 0.7517        | -             | -               | -             | -               |
| 0.0104 | 130  | 0.7534        | -             | -               | -             | -               |
| 0.0112 | 140  | 0.746         | -             | -               | -             | -               |
| 0.012  | 150  | 0.7528        | -             | -               | -             | -               |
| 0.0128 | 160  | 0.7511        | -             | -               | -             | -               |
| 0.0136 | 170  | 0.7491        | -             | -               | -             | -               |
| 0.0144 | 180  | 0.752         | -             | -               | -             | -               |
| 0.0152 | 190  | 0.7512        | -             | -               | -             | -               |
| 0.016  | 200  | 0.7513        | 0.7557        | 0.7259          | 0.7688        | 0.3942          |
| 0.0168 | 210  | 0.7505        | -             | -               | -             | -               |
| 0.0176 | 220  | 0.7481        | -             | -               | -             | -               |
| 0.0184 | 230  | 0.7516        | -             | -               | -             | -               |
| 0.0192 | 240  | 0.7504        | -             | -               | -             | -               |
| 0.02   | 250  | 0.7498        | -             | -               | -             | -               |
| 0.0208 | 260  | 0.7506        | -             | -               | -             | -               |
| 0.0216 | 270  | 0.7486        | -             | -               | -             | -               |
| 0.0224 | 280  | 0.7471        | -             | -               | -             | -               |
| 0.0232 | 290  | 0.7511        | -             | -               | -             | -               |
| 0.024  | 300  | 0.7506        | 0.7553        | 0.7258          | 0.7692        | 0.3943          |
| 0.0248 | 310  | 0.7485        | -             | -               | -             | -               |
| 0.0256 | 320  | 0.7504        | -             | -               | -             | -               |
| 0.0264 | 330  | 0.7456        | -             | -               | -             | -               |
| 0.0272 | 340  | 0.7461        | -             | -               | -             | -               |
| 0.028  | 350  | 0.7496        | -             | -               | -             | -               |
| 0.0288 | 360  | 0.7518        | -             | -               | -             | -               |
| 0.0296 | 370  | 0.7514        | -             | -               | -             | -               |
| 0.0304 | 380  | 0.7479        | -             | -               | -             | -               |
| 0.0312 | 390  | 0.7507        | -             | -               | -             | -               |
| 0.032  | 400  | 0.7511        | 0.7547        | 0.7258          | 0.7695        | 0.3945          |
| 0.0328 | 410  | 0.7491        | -             | -               | -             | -               |
| 0.0336 | 420  | 0.7487        | -             | -               | -             | -               |
| 0.0344 | 430  | 0.7496        | -             | -               | -             | -               |
| 0.0352 | 440  | 0.7464        | -             | -               | -             | -               |
| 0.036  | 450  | 0.7518        | -             | -               | -             | -               |
| 0.0368 | 460  | 0.7481        | -             | -               | -             | -               |
| 0.0376 | 470  | 0.7493        | -             | -               | -             | -               |
| 0.0384 | 480  | 0.753         | -             | -               | -             | -               |
| 0.0392 | 490  | 0.7475        | -             | -               | -             | -               |
| 0.04   | 500  | 0.7498        | 0.7540        | 0.7262          | 0.7700        | 0.3948          |
| 0.0408 | 510  | 0.7464        | -             | -               | -             | -               |
| 0.0416 | 520  | 0.7506        | -             | -               | -             | -               |
| 0.0424 | 530  | 0.747         | -             | -               | -             | -               |
| 0.0432 | 540  | 0.7462        | -             | -               | -             | -               |
| 0.044  | 550  | 0.75          | -             | -               | -             | -               |
| 0.0448 | 560  | 0.7522        | -             | -               | -             | -               |
| 0.0456 | 570  | 0.7452        | -             | -               | -             | -               |
| 0.0464 | 580  | 0.7475        | -             | -               | -             | -               |
| 0.0472 | 590  | 0.7507        | -             | -               | -             | -               |
| 0.048  | 600  | 0.7494        | 0.7531        | 0.7269          | 0.7707        | 0.3951          |
| 0.0488 | 610  | 0.7525        | -             | -               | -             | -               |
| 0.0496 | 620  | 0.7446        | -             | -               | -             | -               |
| 0.0504 | 630  | 0.7457        | -             | -               | -             | -               |
| 0.0512 | 640  | 0.7462        | -             | -               | -             | -               |
| 0.052  | 650  | 0.7478        | -             | -               | -             | -               |
| 0.0528 | 660  | 0.7459        | -             | -               | -             | -               |
| 0.0536 | 670  | 0.7465        | -             | -               | -             | -               |
| 0.0544 | 680  | 0.7495        | -             | -               | -             | -               |
| 0.0552 | 690  | 0.7513        | -             | -               | -             | -               |
| 0.056  | 700  | 0.7445        | 0.7520        | 0.7274          | 0.7705        | 0.3954          |
| 0.0568 | 710  | 0.7446        | -             | -               | -             | -               |
| 0.0576 | 720  | 0.746         | -             | -               | -             | -               |
| 0.0584 | 730  | 0.7452        | -             | -               | -             | -               |
| 0.0592 | 740  | 0.7459        | -             | -               | -             | -               |
| 0.06   | 750  | 0.7419        | -             | -               | -             | -               |
| 0.0608 | 760  | 0.7462        | -             | -               | -             | -               |
| 0.0616 | 770  | 0.7414        | -             | -               | -             | -               |
| 0.0624 | 780  | 0.7444        | -             | -               | -             | -               |
| 0.0632 | 790  | 0.7419        | -             | -               | -             | -               |
| 0.064  | 800  | 0.7438        | 0.7508        | 0.7273          | 0.7712        | 0.3957          |
| 0.0648 | 810  | 0.7503        | -             | -               | -             | -               |
| 0.0656 | 820  | 0.7402        | -             | -               | -             | -               |
| 0.0664 | 830  | 0.7435        | -             | -               | -             | -               |
| 0.0672 | 840  | 0.741         | -             | -               | -             | -               |
| 0.068  | 850  | 0.7386        | -             | -               | -             | -               |
| 0.0688 | 860  | 0.7416        | -             | -               | -             | -               |
| 0.0696 | 870  | 0.7473        | -             | -               | -             | -               |
| 0.0704 | 880  | 0.7438        | -             | -               | -             | -               |
| 0.0712 | 890  | 0.7458        | -             | -               | -             | -               |
| 0.072  | 900  | 0.7446        | 0.7494        | 0.7279          | 0.7718        | 0.3961          |
| 0.0728 | 910  | 0.7483        | -             | -               | -             | -               |
| 0.0736 | 920  | 0.7458        | -             | -               | -             | -               |
| 0.0744 | 930  | 0.7473        | -             | -               | -             | -               |
| 0.0752 | 940  | 0.7431        | -             | -               | -             | -               |
| 0.076  | 950  | 0.7428        | -             | -               | -             | -               |
| 0.0768 | 960  | 0.7385        | -             | -               | -             | -               |
| 0.0776 | 970  | 0.7438        | -             | -               | -             | -               |
| 0.0784 | 980  | 0.7406        | -             | -               | -             | -               |
| 0.0792 | 990  | 0.7426        | -             | -               | -             | -               |
| 0.08   | 1000 | 0.7372        | 0.7478        | 0.7282          | 0.7725        | 0.3965          |
| 0.0808 | 1010 | 0.7396        | -             | -               | -             | -               |
| 0.0816 | 1020 | 0.7398        | -             | -               | -             | -               |
| 0.0824 | 1030 | 0.7376        | -             | -               | -             | -               |
| 0.0832 | 1040 | 0.7417        | -             | -               | -             | -               |
| 0.084  | 1050 | 0.7408        | -             | -               | -             | -               |
| 0.0848 | 1060 | 0.7415        | -             | -               | -             | -               |
| 0.0856 | 1070 | 0.7468        | -             | -               | -             | -               |
| 0.0864 | 1080 | 0.7427        | -             | -               | -             | -               |
| 0.0872 | 1090 | 0.7371        | -             | -               | -             | -               |
| 0.088  | 1100 | 0.7375        | 0.7460        | 0.7279          | 0.7742        | 0.3970          |
| 0.0888 | 1110 | 0.7434        | -             | -               | -             | -               |
| 0.0896 | 1120 | 0.7441        | -             | -               | -             | -               |
| 0.0904 | 1130 | 0.7378        | -             | -               | -             | -               |
| 0.0912 | 1140 | 0.735         | -             | -               | -             | -               |
| 0.092  | 1150 | 0.739         | -             | -               | -             | -               |
| 0.0928 | 1160 | 0.7408        | -             | -               | -             | -               |
| 0.0936 | 1170 | 0.7346        | -             | -               | -             | -               |
| 0.0944 | 1180 | 0.7389        | -             | -               | -             | -               |
| 0.0952 | 1190 | 0.7367        | -             | -               | -             | -               |
| 0.096  | 1200 | 0.7358        | 0.7440        | 0.729           | 0.7747        | 0.3975          |
| 0.0968 | 1210 | 0.7381        | -             | -               | -             | -               |
| 0.0976 | 1220 | 0.7405        | -             | -               | -             | -               |
| 0.0984 | 1230 | 0.7348        | -             | -               | -             | -               |
| 0.0992 | 1240 | 0.737         | -             | -               | -             | -               |
| 0.1    | 1250 | 0.7393        | -             | -               | -             | -               |
| 0.1008 | 1260 | 0.7411        | -             | -               | -             | -               |
| 0.1016 | 1270 | 0.7359        | -             | -               | -             | -               |
| 0.1024 | 1280 | 0.7276        | -             | -               | -             | -               |
| 0.1032 | 1290 | 0.7364        | -             | -               | -             | -               |
| 0.104  | 1300 | 0.7333        | 0.7418        | 0.7293          | 0.7747        | 0.3979          |
| 0.1048 | 1310 | 0.7367        | -             | -               | -             | -               |
| 0.1056 | 1320 | 0.7352        | -             | -               | -             | -               |
| 0.1064 | 1330 | 0.7333        | -             | -               | -             | -               |
| 0.1072 | 1340 | 0.737         | -             | -               | -             | -               |
| 0.108  | 1350 | 0.7361        | -             | -               | -             | -               |
| 0.1088 | 1360 | 0.7299        | -             | -               | -             | -               |
| 0.1096 | 1370 | 0.7339        | -             | -               | -             | -               |
| 0.1104 | 1380 | 0.7349        | -             | -               | -             | -               |
| 0.1112 | 1390 | 0.7318        | -             | -               | -             | -               |
| 0.112  | 1400 | 0.7336        | 0.7394        | 0.7292          | 0.7749        | 0.3983          |
| 0.1128 | 1410 | 0.7326        | -             | -               | -             | -               |
| 0.1136 | 1420 | 0.7317        | -             | -               | -             | -               |
| 0.1144 | 1430 | 0.7315        | -             | -               | -             | -               |
| 0.1152 | 1440 | 0.7321        | -             | -               | -             | -               |
| 0.116  | 1450 | 0.7284        | -             | -               | -             | -               |
| 0.1168 | 1460 | 0.7308        | -             | -               | -             | -               |
| 0.1176 | 1470 | 0.7287        | -             | -               | -             | -               |
| 0.1184 | 1480 | 0.727         | -             | -               | -             | -               |
| 0.1192 | 1490 | 0.7298        | -             | -               | -             | -               |
| 0.12   | 1500 | 0.7306        | 0.7368        | 0.7301          | 0.7755        | 0.3988          |
| 0.1208 | 1510 | 0.7269        | -             | -               | -             | -               |
| 0.1216 | 1520 | 0.7299        | -             | -               | -             | -               |
| 0.1224 | 1530 | 0.7256        | -             | -               | -             | -               |
| 0.1232 | 1540 | 0.721         | -             | -               | -             | -               |
| 0.124  | 1550 | 0.7274        | -             | -               | -             | -               |
| 0.1248 | 1560 | 0.7251        | -             | -               | -             | -               |
| 0.1256 | 1570 | 0.7248        | -             | -               | -             | -               |
| 0.1264 | 1580 | 0.7244        | -             | -               | -             | -               |
| 0.1272 | 1590 | 0.7275        | -             | -               | -             | -               |
| 0.128  | 1600 | 0.7264        | 0.7339        | 0.7298          | 0.7756        | 0.3991          |
| 0.1288 | 1610 | 0.7252        | -             | -               | -             | -               |
| 0.1296 | 1620 | 0.7287        | -             | -               | -             | -               |
| 0.1304 | 1630 | 0.7263        | -             | -               | -             | -               |
| 0.1312 | 1640 | 0.7216        | -             | -               | -             | -               |
| 0.132  | 1650 | 0.7231        | -             | -               | -             | -               |
| 0.1328 | 1660 | 0.728         | -             | -               | -             | -               |
| 0.1336 | 1670 | 0.7309        | -             | -               | -             | -               |
| 0.1344 | 1680 | 0.7243        | -             | -               | -             | -               |
| 0.1352 | 1690 | 0.7239        | -             | -               | -             | -               |
| 0.136  | 1700 | 0.7219        | 0.7309        | 0.7302          | 0.7768        | 0.3994          |
| 0.1368 | 1710 | 0.7212        | -             | -               | -             | -               |
| 0.1376 | 1720 | 0.7217        | -             | -               | -             | -               |
| 0.1384 | 1730 | 0.7118        | -             | -               | -             | -               |
| 0.1392 | 1740 | 0.7226        | -             | -               | -             | -               |
| 0.14   | 1750 | 0.7185        | -             | -               | -             | -               |
| 0.1408 | 1760 | 0.7228        | -             | -               | -             | -               |
| 0.1416 | 1770 | 0.7257        | -             | -               | -             | -               |
| 0.1424 | 1780 | 0.7177        | -             | -               | -             | -               |
| 0.1432 | 1790 | 0.722         | -             | -               | -             | -               |
| 0.144  | 1800 | 0.712         | 0.7276        | 0.7307          | 0.7763        | 0.3997          |
| 0.1448 | 1810 | 0.7193        | -             | -               | -             | -               |
| 0.1456 | 1820 | 0.7138        | -             | -               | -             | -               |
| 0.1464 | 1830 | 0.7171        | -             | -               | -             | -               |
| 0.1472 | 1840 | 0.7191        | -             | -               | -             | -               |
| 0.148  | 1850 | 0.7172        | -             | -               | -             | -               |
| 0.1488 | 1860 | 0.7168        | -             | -               | -             | -               |
| 0.1496 | 1870 | 0.7111        | -             | -               | -             | -               |
| 0.1504 | 1880 | 0.7203        | -             | -               | -             | -               |
| 0.1512 | 1890 | 0.7095        | -             | -               | -             | -               |
| 0.152  | 1900 | 0.7064        | 0.7240        | 0.7301          | 0.7762        | 0.3998          |
| 0.1528 | 1910 | 0.7147        | -             | -               | -             | -               |
| 0.1536 | 1920 | 0.7098        | -             | -               | -             | -               |
| 0.1544 | 1930 | 0.7193        | -             | -               | -             | -               |
| 0.1552 | 1940 | 0.7096        | -             | -               | -             | -               |
| 0.156  | 1950 | 0.7107        | -             | -               | -             | -               |
| 0.1568 | 1960 | 0.7146        | -             | -               | -             | -               |
| 0.1576 | 1970 | 0.7106        | -             | -               | -             | -               |
| 0.1584 | 1980 | 0.7079        | -             | -               | -             | -               |
| 0.1592 | 1990 | 0.7097        | -             | -               | -             | -               |
| 0.16   | 2000 | 0.71          | 0.7202        | 0.7298          | 0.7758        | 0.3997          |

</details>

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.38.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.27.2
- Datasets: 2.19.1
- Tokenizers: 0.15.2

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### TripletLoss
```bibtex
@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification}, 
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->