luquesky's picture
update model card README.md
c9849e4
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.934
- name: F1
type: f1
value: 0.9337817808480242
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2155
- Accuracy: 0.934
- F1: 0.9338
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.1768 | 1.0 | 250 | 0.1867 | 0.924 | 0.9235 |
| 0.1227 | 2.0 | 500 | 0.1588 | 0.934 | 0.9346 |
| 0.1031 | 3.0 | 750 | 0.1656 | 0.931 | 0.9306 |
| 0.0843 | 4.0 | 1000 | 0.1662 | 0.9395 | 0.9392 |
| 0.0662 | 5.0 | 1250 | 0.1714 | 0.9325 | 0.9326 |
| 0.0504 | 6.0 | 1500 | 0.1821 | 0.934 | 0.9338 |
| 0.0429 | 7.0 | 1750 | 0.2038 | 0.933 | 0.9324 |
| 0.0342 | 8.0 | 2000 | 0.2054 | 0.938 | 0.9379 |
| 0.0296 | 9.0 | 2250 | 0.2128 | 0.9345 | 0.9345 |
| 0.0211 | 10.0 | 2500 | 0.2155 | 0.934 | 0.9338 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6