File size: 1,899 Bytes
3d43214
71544ff
3d43214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71544ff
3d43214
71544ff
 
 
 
3d43214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71544ff
 
 
 
 
3d43214
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
base_model: lupobricco/feel_it_finetuned_pro_emit_multilabel2
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
model-index:
- name: feel_it_finetuned_pro_multimodal_no_prompt
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# feel_it_finetuned_pro_multimodal_no_prompt

This model is a fine-tuned version of [lupobricco/feel_it_finetuned_pro_emit_multilabel2](https://huggingface.co/lupobricco/feel_it_finetuned_pro_emit_multilabel2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2571
- F1: 0.4585
- Roc Auc: 0.6817
- Accuracy: 0.2887

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Roc Auc | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:|
| No log        | 1.0   | 24   | 0.2654          | 0.4199 | 0.6506  | 0.2577   |
| No log        | 2.0   | 48   | 0.2597          | 0.4498 | 0.6794  | 0.2474   |
| No log        | 3.0   | 72   | 0.2571          | 0.4585 | 0.6817  | 0.2887   |
| No log        | 4.0   | 96   | 0.2592          | 0.4486 | 0.6815  | 0.2474   |
| No log        | 5.0   | 120  | 0.2561          | 0.4455 | 0.6782  | 0.2680   |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.0.0+cu118
- Datasets 2.18.0
- Tokenizers 0.15.2