rob-conv / README.md
lulygavri's picture
Training in progress epoch 1
fda325d
---
license: apache-2.0
base_model: PlanTL-GOB-ES/roberta-base-bne
tags:
- generated_from_keras_callback
model-index:
- name: lulygavri/rob-conv
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# lulygavri/rob-conv
This model is a fine-tuned version of [PlanTL-GOB-ES/roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0787
- Validation Loss: 0.0220
- Train Accuracy: 0.9948
- Train Precision: [0.95822589 0.99925584 0.99829758]
- Train Precision W: 0.9949
- Train Recall: [0.99678112 0.99385686 0.99761824]
- Train Recall W: 0.9948
- Train F1: [0.97712332 0.99654904 0.99795779]
- Train F1 W: 0.9948
- Epoch: 1
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3964, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 500, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Train Accuracy | Train Precision | Train Precision W | Train Recall | Train Recall W | Train F1 | Train F1 W | Epoch |
|:----------:|:---------------:|:--------------:|:----------------------------------:|:-----------------:|:----------------------------------:|:--------------:|:----------------------------------:|:----------:|:-----:|
| 0.0787 | 0.0220 | 0.9948 | [0.95822589 0.99925584 0.99829758] | 0.9949 | [0.99678112 0.99385686 0.99761824] | 0.9948 | [0.97712332 0.99654904 0.99795779] | 0.9948 | 1 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.1