|
--- |
|
base_model: dccuchile/bert-base-spanish-wwm-uncased |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: lulygavri/berto-subj |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# lulygavri/berto-subj |
|
|
|
This model is a fine-tuned version of [dccuchile/bert-base-spanish-wwm-uncased](https://huggingface.co/dccuchile/bert-base-spanish-wwm-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.2648 |
|
- Validation Loss: 0.2302 |
|
- Train Accuracy: 0.8400 |
|
- Train Precision: [0.9935821 0.39460253] |
|
- Train Precision W: 0.9301 |
|
- Train Recall: [0.82643237 0.95494063] |
|
- Train Recall W: 0.8400 |
|
- Train F1: [0.90233174 0.55844377] |
|
- Train F1 W: 0.8659 |
|
- Epoch: 1 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 2e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 18106, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 500, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} |
|
- training_precision: mixed_float16 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Accuracy | Train Precision | Train Precision W | Train Recall | Train Recall W | Train F1 | Train F1 W | Epoch | |
|
|:----------:|:---------------:|:--------------:|:-----------------------:|:-----------------:|:-----------------------:|:--------------:|:-----------------------:|:----------:|:-----:| |
|
| 0.2648 | 0.2302 | 0.8400 | [0.9935821 0.39460253] | 0.9301 | [0.82643237 0.95494063] | 0.8400 | [0.90233174 0.55844377] | 0.8659 | 1 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- TensorFlow 2.15.0 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|