luisarizmendi's picture
Update README.md
1b3e534 verified
|
raw
history blame
6 kB
metadata
task_categories:
  - object-detection
tags:
  - safety
  - yolo
  - yolo11
datasets:
  - luisarizmendi/safety-equipment
base_model:
  - Ultralytics/YOLO11
widget:
  - src: >-
      https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
    example_title: Football Match
  - src: >-
      https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
    example_title: Airport
pipeline_tag: object-detection
model-index:
  - name: yolo11-safety-equipment
    results:
      - task:
          type: object-detection
        dataset:
          type: safety-equipment
          name: Safety Equipment
          args:
            epochs: 35
            batch: 2
            imgsz: 640
            patience: 5
            optimizer: SGD
            lr0: 0.001
            lrf: 0.01
            momentum: 0.9
            weight_decay: 0.0005
            warmup_epochs: 3
            warmup_bias_lr: 0.01
            warmup_momentum: 0.8
        metrics:
          - type: precision
            value: 0.99
            name: Precision
          - type: recall
            value: 0.99
            name: Recall
          - type: mAP50
            value: 0.99
            name: mAP50
          - type: mAP50-95
            value: 0.99
            name: mAP50-95

Model for safety-equipment detection

luisarizmendi/safety-equipment

Model binary

Since with my Huggingface account I cannot push files greater than 10Mb, you can download the model from here

Labels

- glove
- goggles
- helmet
- mask
- no_glove
- no_goggles
- no_helmet
- no_mask
- no_shoes
- shoes

Dataset

https://universe.roboflow.com/luisarizmendi/safety-or-hat/dataset/1

This dataset is based on this other one that you can find in Roboflow

Hyperparameters

epochs: 35
batch: 2
imgsz: 640
patience: 5
optimizer: 'SGD'
lr0: 0.001
lrf: 0.01
momentum: 0.9
weight_decay: 0.0005
warmup_epochs: 3
warmup_bias_lr: 0.01
warmup_momentum: 0.8

Augmentation

hsv_h=0.015,  # Image HSV-Hue augmentationc
hsv_s=0.7,   # Image HSV-Saturation augmentation
hsv_v=0.4,   # Image HSV-Value augmentation
degrees=10,  # Image rotation (+/- deg)
translate=0.1,  # Image translation (+/- fraction)
scale=0.3,   # Image scale (+/- gain)
shear=0.0,   # Image shear (+/- deg)
perspective=0.0,  # Image perspective
flipud=0.1,  # Image flip up-down
fliplr=0.1,  # Image flip left-right
mosaic=1.0,  # Image mosaic
mixup=0.0,   # Image mixup

Usage

Install the following PIP requirements

gradio
ultralytics
Pillow
opencv-python
torch

Then run this python code:

import gradio as gr
from ultralytics import YOLO
from PIL import Image
import os
import cv2 
import torch 

def detect_objects_in_files(files):
    """
    Processes uploaded images for object detection.
    """
    if not files:
        return "No files uploaded.", []

    device = "cuda" if torch.cuda.is_available() else "cpu"  
    model = YOLO("https://github.com/luisarizmendi/ai-apps/raw/refs/heads/main/models/luisarizmendi/safety-hat/safety-hat-v1.pt")
    model.to(device)
    
    results_images = []
    for file in files:
        try:
            image = Image.open(file).convert("RGB")
            results = model(image) 
            result_img_bgr = results[0].plot()
            result_img_rgb = cv2.cvtColor(result_img_bgr, cv2.COLOR_BGR2RGB)
            results_images.append(result_img_rgb)   
         
            # If you want that images appear one by one (slower)
            #yield "Processing image...", results_images  
                
        except Exception as e:
            return f"Error processing file: {file}. Exception: {str(e)}", []

    del model  
    torch.cuda.empty_cache()
    
    return "Processing completed.", results_images

interface = gr.Interface(
    fn=detect_objects_in_files,
    inputs=gr.Files(file_types=["image"], label="Select Images"),
    outputs=[
        gr.Textbox(label="Status"),
        gr.Gallery(label="Results")
    ],
    title="Object Detection on Images",
    description="Upload images to perform object detection. The model will process each image and display the results."
)

if __name__ == "__main__":
    interface.launch()

Finally open http://localhost:7860 in a browser and upload the images to scan.

Usage with Huggingface spaces

If you don't want to run it locally, you can use this huggingface space that I've created with this code but be aware that this will be slow since I'm using a free instance.