File size: 1,787 Bytes
fbcfb65
 
 
 
5f56596
 
fbcfb65
 
5f56596
fbcfb65
 
 
 
 
 
 
 
 
 
d2f8d81
 
fbcfb65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2f8d81
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- luigisaetta/atco2_atcosim
metrics:
- wer
base_model: openai/whisper-medium
model-index:
- name: whisper-atcosim
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-atcosim

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the 
atco2_atcosim dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0628
- Wer: 0.0369

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 200
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5702        | 0.2   | 50   | 0.2557          | 0.1007 |
| 0.1181        | 0.39  | 100  | 0.1144          | 0.0775 |
| 0.1073        | 0.59  | 150  | 0.0740          | 0.0529 |
| 0.0747        | 0.79  | 200  | 0.0628          | 0.0369 |


### Framework versions

- Transformers 4.29.0
- Pytorch 2.0.0+cu117
- Datasets 2.12.0
- Tokenizers 0.11.0