File size: 1,787 Bytes
fbcfb65 5f56596 fbcfb65 5f56596 fbcfb65 d2f8d81 fbcfb65 d2f8d81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- luigisaetta/atco2_atcosim
metrics:
- wer
base_model: openai/whisper-medium
model-index:
- name: whisper-atcosim
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-atcosim
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the
atco2_atcosim dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0628
- Wer: 0.0369
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 200
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5702 | 0.2 | 50 | 0.2557 | 0.1007 |
| 0.1181 | 0.39 | 100 | 0.1144 | 0.0775 |
| 0.1073 | 0.59 | 150 | 0.0740 | 0.0529 |
| 0.0747 | 0.79 | 200 | 0.0628 | 0.0369 |
### Framework versions
- Transformers 4.29.0
- Pytorch 2.0.0+cu117
- Datasets 2.12.0
- Tokenizers 0.11.0 |