File size: 7,516 Bytes
8652957 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 |
#ifndef LM_QUANTIZE_H
#define LM_QUANTIZE_H
#include "lm/blank.hh"
#include "lm/config.hh"
#include "lm/max_order.hh"
#include "lm/model_type.hh"
#include "util/bit_packing.hh"
#include <algorithm>
#include <vector>
#include <stdint.h>
#include <iostream>
namespace lm {
namespace ngram {
struct Config;
class BinaryFormat;
/* Store values directly and don't quantize. */
class DontQuantize {
public:
static const ModelType kModelTypeAdd = static_cast<ModelType>(0);
static void UpdateConfigFromBinary(const BinaryFormat &, uint64_t, Config &) {}
static uint64_t Size(uint8_t /*order*/, const Config &/*config*/) { return 0; }
static uint8_t MiddleBits(const Config &/*config*/) { return 63; }
static uint8_t LongestBits(const Config &/*config*/) { return 31; }
class MiddlePointer {
public:
MiddlePointer(const DontQuantize & /*quant*/, unsigned char /*order_minus_2*/, util::BitAddress address) : address_(address) {}
MiddlePointer() : address_(NULL, 0) {}
bool Found() const {
return address_.base != NULL;
}
float Prob() const {
return util::ReadNonPositiveFloat31(address_.base, address_.offset);
}
float Backoff() const {
return util::ReadFloat32(address_.base, address_.offset + 31);
}
float Rest() const { return Prob(); }
void Write(float prob, float backoff) {
util::WriteNonPositiveFloat31(address_.base, address_.offset, prob);
util::WriteFloat32(address_.base, address_.offset + 31, backoff);
}
private:
util::BitAddress address_;
};
class LongestPointer {
public:
explicit LongestPointer(const DontQuantize &/*quant*/, util::BitAddress address) : address_(address) {}
LongestPointer() : address_(NULL, 0) {}
bool Found() const {
return address_.base != NULL;
}
float Prob() const {
return util::ReadNonPositiveFloat31(address_.base, address_.offset);
}
void Write(float prob) {
util::WriteNonPositiveFloat31(address_.base, address_.offset, prob);
}
private:
util::BitAddress address_;
};
DontQuantize() {}
void SetupMemory(void * /*start*/, unsigned char /*order*/, const Config & /*config*/) {}
static const bool kTrain = false;
// These should never be called because kTrain is false.
void Train(uint8_t /*order*/, std::vector<float> &/*prob*/, std::vector<float> &/*backoff*/) {}
void TrainProb(uint8_t, std::vector<float> &/*prob*/) {}
void FinishedLoading(const Config &) {}
};
class SeparatelyQuantize {
private:
class Bins {
public:
// Sigh C++ default constructor
Bins() {}
Bins(uint8_t bits, float *begin) : begin_(begin), end_(begin_ + (1ULL << bits)), bits_(bits), mask_((1ULL << bits) - 1) {}
float *Populate() { return begin_; }
uint64_t EncodeProb(float value) const {
return Encode(value, 0);
}
uint64_t EncodeBackoff(float value) const {
if (value == 0.0) {
return HasExtension(value) ? kExtensionQuant : kNoExtensionQuant;
}
return Encode(value, 2);
}
float Decode(std::size_t off) const { return begin_[off]; }
uint8_t Bits() const { return bits_; }
uint64_t Mask() const { return mask_; }
private:
uint64_t Encode(float value, size_t reserved) const {
const float *above = std::lower_bound(static_cast<const float*>(begin_) + reserved, end_, value);
if (above == begin_ + reserved) return reserved;
if (above == end_) return end_ - begin_ - 1;
return above - begin_ - (value - *(above - 1) < *above - value);
}
float *begin_;
const float *end_;
uint8_t bits_;
uint64_t mask_;
};
public:
static const ModelType kModelTypeAdd = kQuantAdd;
static void UpdateConfigFromBinary(const BinaryFormat &file, uint64_t offset, Config &config);
static uint64_t Size(uint8_t order, const Config &config) {
uint64_t longest_table = (static_cast<uint64_t>(1) << static_cast<uint64_t>(config.prob_bits)) * sizeof(float);
uint64_t middle_table = (static_cast<uint64_t>(1) << static_cast<uint64_t>(config.backoff_bits)) * sizeof(float) + longest_table;
// unigrams are currently not quantized so no need for a table.
return (order - 2) * middle_table + longest_table + /* for the bit counts and alignment padding) */ 8;
}
static uint8_t MiddleBits(const Config &config) { return config.prob_bits + config.backoff_bits; }
static uint8_t LongestBits(const Config &config) { return config.prob_bits; }
class MiddlePointer {
public:
MiddlePointer(const SeparatelyQuantize &quant, unsigned char order_minus_2, const util::BitAddress &address) : bins_(quant.GetTables(order_minus_2)), address_(address) {}
MiddlePointer() : address_(NULL, 0) {}
bool Found() const { return address_.base != NULL; }
float Prob() const {
return ProbBins().Decode(util::ReadInt25(address_.base, address_.offset + BackoffBins().Bits(), ProbBins().Bits(), ProbBins().Mask()));
}
float Backoff() const {
return BackoffBins().Decode(util::ReadInt25(address_.base, address_.offset, BackoffBins().Bits(), BackoffBins().Mask()));
}
float Rest() const { return Prob(); }
void Write(float prob, float backoff) const {
util::WriteInt57(address_.base, address_.offset, ProbBins().Bits() + BackoffBins().Bits(),
(ProbBins().EncodeProb(prob) << BackoffBins().Bits()) | BackoffBins().EncodeBackoff(backoff));
}
private:
const Bins &ProbBins() const { return bins_[0]; }
const Bins &BackoffBins() const { return bins_[1]; }
const Bins *bins_;
util::BitAddress address_;
};
class LongestPointer {
public:
LongestPointer(const SeparatelyQuantize &quant, const util::BitAddress &address) : table_(&quant.LongestTable()), address_(address) {}
LongestPointer() : address_(NULL, 0) {}
bool Found() const { return address_.base != NULL; }
void Write(float prob) const {
util::WriteInt25(address_.base, address_.offset, table_->Bits(), table_->EncodeProb(prob));
}
float Prob() const {
return table_->Decode(util::ReadInt25(address_.base, address_.offset, table_->Bits(), table_->Mask()));
}
private:
const Bins *table_;
util::BitAddress address_;
};
SeparatelyQuantize() {}
void SetupMemory(void *start, unsigned char order, const Config &config);
static const bool kTrain = true;
// Assumes 0.0 is removed from backoff.
void Train(uint8_t order, std::vector<float> &prob, std::vector<float> &backoff);
// Train just probabilities (for longest order).
void TrainProb(uint8_t order, std::vector<float> &prob);
void FinishedLoading(const Config &config);
const Bins *GetTables(unsigned char order_minus_2) const { return tables_[order_minus_2]; }
const Bins &LongestTable() const { return longest_; }
private:
Bins tables_[KENLM_MAX_ORDER - 1][2];
Bins longest_;
uint8_t *actual_base_;
uint8_t prob_bits_, backoff_bits_;
};
} // namespace ngram
} // namespace lm
#endif // LM_QUANTIZE_H
|