File size: 7,180 Bytes
8652957 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
/* Efficient left and right language model state for sentence fragments.
* Intended usage:
* Store ChartState with every chart entry.
* To do a rule application:
* 1. Make a ChartState object for your new entry.
* 2. Construct RuleScore.
* 3. Going from left to right, call Terminal or NonTerminal.
* For terminals, just pass the vocab id.
* For non-terminals, pass that non-terminal's ChartState.
* If your decoder expects scores inclusive of subtree scores (i.e. you
* label entries with the highest-scoring path), pass the non-terminal's
* score as prob.
* If your decoder expects relative scores and will walk the chart later,
* pass prob = 0.0.
* In other words, the only effect of prob is that it gets added to the
* returned log probability.
* 4. Call Finish. It returns the log probability.
*
* There's a couple more details:
* Do not pass <s> to Terminal as it is formally not a word in the sentence,
* only context. Instead, call BeginSentence. If called, it should be the
* first call after RuleScore is constructed (since <s> is always the
* leftmost).
*
* If the leftmost RHS is a non-terminal, it's faster to call BeginNonTerminal.
*
* Hashing and sorting comparison operators are provided. All state objects
* are POD. If you intend to use memcmp on raw state objects, you must call
* ZeroRemaining first, as the value of array entries beyond length is
* otherwise undefined.
*
* Usage is of course not limited to chart decoding. Anything that generates
* sentence fragments missing left context could benefit. For example, a
* phrase-based decoder could pre-score phrases, storing ChartState with each
* phrase, even if hypotheses are generated left-to-right.
*/
#ifndef LM_LEFT_H
#define LM_LEFT_H
#include "lm/max_order.hh"
#include "lm/state.hh"
#include "lm/return.hh"
#include "util/murmur_hash.hh"
#include <algorithm>
namespace lm {
namespace ngram {
template <class M> class RuleScore {
public:
explicit RuleScore(const M &model, ChartState &out) : model_(model), out_(&out), left_done_(false), prob_(0.0) {
out.left.length = 0;
out.right.length = 0;
}
void BeginSentence() {
out_->right = model_.BeginSentenceState();
// out_->left is empty.
left_done_ = true;
}
void Terminal(WordIndex word) {
State copy(out_->right);
FullScoreReturn ret(model_.FullScore(copy, word, out_->right));
if (left_done_) { prob_ += ret.prob; return; }
if (ret.independent_left) {
prob_ += ret.prob;
left_done_ = true;
return;
}
out_->left.pointers[out_->left.length++] = ret.extend_left;
prob_ += ret.rest;
if (out_->right.length != copy.length + 1)
left_done_ = true;
}
// Faster version of NonTerminal for the case where the rule begins with a non-terminal.
void BeginNonTerminal(const ChartState &in, float prob = 0.0) {
prob_ = prob;
*out_ = in;
left_done_ = in.left.full;
}
void NonTerminal(const ChartState &in, float prob = 0.0) {
prob_ += prob;
if (!in.left.length) {
if (in.left.full) {
for (const float *i = out_->right.backoff; i < out_->right.backoff + out_->right.length; ++i) prob_ += *i;
left_done_ = true;
out_->right = in.right;
}
return;
}
if (!out_->right.length) {
out_->right = in.right;
if (left_done_) {
prob_ += model_.UnRest(in.left.pointers, in.left.pointers + in.left.length, 1);
return;
}
if (out_->left.length) {
left_done_ = true;
} else {
out_->left = in.left;
left_done_ = in.left.full;
}
return;
}
float backoffs[KENLM_MAX_ORDER - 1], backoffs2[KENLM_MAX_ORDER - 1];
float *back = backoffs, *back2 = backoffs2;
unsigned char next_use = out_->right.length;
// First word
if (ExtendLeft(in, next_use, 1, out_->right.backoff, back)) return;
// Words after the first, so extending a bigram to begin with
for (unsigned char extend_length = 2; extend_length <= in.left.length; ++extend_length) {
if (ExtendLeft(in, next_use, extend_length, back, back2)) return;
std::swap(back, back2);
}
if (in.left.full) {
for (const float *i = back; i != back + next_use; ++i) prob_ += *i;
left_done_ = true;
out_->right = in.right;
return;
}
// Right state was minimized, so it's already independent of the new words to the left.
if (in.right.length < in.left.length) {
out_->right = in.right;
return;
}
// Shift exisiting words down.
for (WordIndex *i = out_->right.words + next_use - 1; i >= out_->right.words; --i) {
*(i + in.right.length) = *i;
}
// Add words from in.right.
std::copy(in.right.words, in.right.words + in.right.length, out_->right.words);
// Assemble backoff composed on the existing state's backoff followed by the new state's backoff.
std::copy(in.right.backoff, in.right.backoff + in.right.length, out_->right.backoff);
std::copy(back, back + next_use, out_->right.backoff + in.right.length);
out_->right.length = in.right.length + next_use;
}
float Finish() {
// A N-1-gram might extend left and right but we should still set full to true because it's an N-1-gram.
out_->left.full = left_done_ || (out_->left.length == model_.Order() - 1);
return prob_;
}
void Reset() {
prob_ = 0.0;
left_done_ = false;
out_->left.length = 0;
out_->right.length = 0;
}
void Reset(ChartState &replacement) {
out_ = &replacement;
Reset();
}
private:
bool ExtendLeft(const ChartState &in, unsigned char &next_use, unsigned char extend_length, const float *back_in, float *back_out) {
ProcessRet(model_.ExtendLeft(
out_->right.words, out_->right.words + next_use, // Words to extend into
back_in, // Backoffs to use
in.left.pointers[extend_length - 1], extend_length, // Words to be extended
back_out, // Backoffs for the next score
next_use)); // Length of n-gram to use in next scoring.
if (next_use != out_->right.length) {
left_done_ = true;
if (!next_use) {
// Early exit.
out_->right = in.right;
prob_ += model_.UnRest(in.left.pointers + extend_length, in.left.pointers + in.left.length, extend_length + 1);
return true;
}
}
// Continue scoring.
return false;
}
void ProcessRet(const FullScoreReturn &ret) {
if (left_done_) {
prob_ += ret.prob;
return;
}
if (ret.independent_left) {
prob_ += ret.prob;
left_done_ = true;
return;
}
out_->left.pointers[out_->left.length++] = ret.extend_left;
prob_ += ret.rest;
}
const M &model_;
ChartState *out_;
bool left_done_;
float prob_;
};
} // namespace ngram
} // namespace lm
#endif // LM_LEFT_H
|