File size: 2,513 Bytes
0bbdad1 bea1a8e 0bbdad1 bea1a8e 0bbdad1 bea1a8e 0bbdad1 399d0d4 0bbdad1 399d0d4 0bbdad1 bea1a8e 0bbdad1 bea1a8e 0bbdad1 bea1a8e 0bbdad1 89dcecc 399d0d4 0bbdad1 399d0d4 0bbdad1 c8b6183 0bbdad1 399d0d4 0bbdad1 bea1a8e 0bbdad1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice
model-index:
- name: xls-r-uyghur-cv8
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xls-r-uyghur-cv8
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2024
- Wer: 0.3280
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 100.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.3036 | 5.32 | 500 | 3.2628 | 1.0 |
| 2.9734 | 10.63 | 1000 | 2.5677 | 0.9980 |
| 1.3466 | 15.95 | 1500 | 0.4455 | 0.6306 |
| 1.2424 | 21.28 | 2000 | 0.3603 | 0.5301 |
| 1.1655 | 26.59 | 2500 | 0.3165 | 0.4740 |
| 1.1026 | 31.91 | 3000 | 0.2930 | 0.4400 |
| 1.0655 | 37.23 | 3500 | 0.2675 | 0.4159 |
| 1.0239 | 42.55 | 4000 | 0.2580 | 0.3913 |
| 0.9938 | 47.87 | 4500 | 0.2373 | 0.3698 |
| 0.9655 | 53.19 | 5000 | 0.2379 | 0.3675 |
| 0.9374 | 58.51 | 5500 | 0.2486 | 0.3795 |
| 0.9065 | 63.83 | 6000 | 0.2243 | 0.3405 |
| 0.888 | 69.15 | 6500 | 0.2157 | 0.3277 |
| 0.8646 | 74.47 | 7000 | 0.2103 | 0.3288 |
| 0.8602 | 79.78 | 7500 | 0.2088 | 0.3238 |
| 0.8442 | 85.11 | 8000 | 0.2045 | 0.3266 |
| 0.8335 | 90.42 | 8500 | 0.2038 | 0.3241 |
| 0.8288 | 95.74 | 9000 | 0.2024 | 0.3280 |
### Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
|