|
--- |
|
language: lg |
|
datasets: |
|
- common_voice |
|
metrics: |
|
- wer |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning-week |
|
license: apache-2.0 |
|
model-index: |
|
- name: XLSR Wav2Vec2 Large Luganda by Lucio |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice lg |
|
type: common_voice |
|
args: lg |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 29.52 |
|
--- |
|
|
|
# Wav2Vec2-Large-XLSR-53-lg |
|
|
|
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Luganda using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset, using train, validation and other (excluding voices that are in the test set), and taking the test data for validation as well as test. |
|
When using this model, make sure that your speech input is sampled at 16kHz. |
|
|
|
## Usage |
|
|
|
The model can be used directly (without a language model) as follows: |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
|
|
test_dataset = load_dataset("common_voice", "lg", split="test[:2%]") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("lucio/wav2vec2-large-xlsr-luganda") |
|
model = Wav2Vec2ForCTC.from_pretrained("lucio/wav2vec2-large-xlsr-luganda") |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits |
|
|
|
predicted_ids = torch.argmax(logits, dim=-1) |
|
|
|
print("Prediction:", processor.batch_decode(predicted_ids)) |
|
print("Reference:", test_dataset["sentence"][:2]) |
|
``` |
|
|
|
|
|
## Evaluation |
|
|
|
The model can be evaluated as follows on the Luganda test data of Common Voice. (Available in Colab [here](https://colab.research.google.com/drive/1XxZ3mJOEXwIn-QH3C23jD_Qpom9aA1vH?usp=sharing).) |
|
|
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor |
|
import re |
|
import unidecode |
|
|
|
test_dataset = load_dataset("common_voice", "lg", split="test") |
|
wer = load_metric("wer") |
|
|
|
processor = Wav2Vec2Processor.from_pretrained("lucio/wav2vec2-large-xlsr-luganda") |
|
model = Wav2Vec2ForCTC.from_pretrained("lucio/wav2vec2-large-xlsr-luganda") |
|
model.to("cuda") |
|
|
|
chars_to_ignore_regex = '[\[\],?.!;:%"“”(){}‟ˮʺ″«»/…‽�–]' |
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
|
|
# Preprocessing the datasets. |
|
# We need to read the audio files as arrays |
|
def speech_file_to_array_fn(batch): |
|
speech_array, sampling_rate = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler(speech_array).squeeze().numpy() |
|
return batch |
|
|
|
def remove_special_characters(batch): |
|
# word-internal apostrophes are marking contractions |
|
batch["norm_text"] = re.sub(r'[‘’´`]', r"'", batch["sentence"]) |
|
# most other punctuation is ignored |
|
batch["norm_text"] = re.sub(chars_to_ignore_regex, "", batch["norm_text"]).lower().strip() |
|
batch["norm_text"] = re.sub(r"(-|' | '| +)", " ", batch["norm_text"]) |
|
# remove accents from a few characters (from loanwords, not tones) |
|
batch["norm_text"] = unidecode.unidecode(batch["norm_text"]) |
|
return batch |
|
|
|
test_dataset = test_dataset.map(speech_file_to_array_fn) |
|
test_dataset = test_dataset.map(remove_special_characters) |
|
|
|
def evaluate(batch): |
|
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) |
|
|
|
with torch.no_grad(): |
|
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits |
|
|
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["pred_strings"] = processor.batch_decode(pred_ids) |
|
return batch |
|
|
|
result = test_dataset.map(evaluate, batched=True, batch_size=8) |
|
|
|
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["norm_text"]))) |
|
``` |
|
|
|
**Test Result**: 29.52 % |
|
|
|
## Training |
|
|
|
The Common Voice `train`, `validation` and `other` datasets were used for training, excluding voices that are in both the `other` and `test` datasets. The data was augmented to twice the original size with added noise and manipulated pitch, phase and intensity. |
|
Training proceeded for 60 epochs, on 1 V100 GPU provided by OVHcloud. The `test` data was used for validation. |
|
|
|
The [script used for training](https://github.com/serapio/transformers/blob/feature/xlsr-finetune/examples/research_projects/wav2vec2/run_common_voice.py) is adapted from the [example script provided in the transformers repo](https://github.com/huggingface/transformers/blob/master/examples/research_projects/wav2vec2/run_common_voice.py). |