File size: 103,550 Bytes
132573d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
06/19/2024 22:00:21 - WARNING - __main__ - Process rank: -1, device: cuda:0, n_gpu: 1distributed training: False, 16-bits training: False
06/19/2024 22:00:21 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_pin_memory=True,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
do_eval=False,
do_predict=True,
do_train=False,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
gradient_accumulation_steps=1,
gradient_checkpointing=False,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=5e-05,
length_column_name=length,
load_best_model_at_end=False,
local_rank=-1,
log_level=passive,
log_level_replica=passive,
log_on_each_node=True,
logging_dir=/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41/runs/Jun19_22-00-21_ppi-nlp6,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=steps,
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
no_cuda=False,
num_train_epochs=3.0,
optim=adamw_hf,
optim_args=None,
output_dir=/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41,
overwrite_output_dir=False,
past_index=-1,
per_device_eval_batch_size=4,
per_device_train_batch_size=8,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=[],
resume_from_checkpoint=None,
run_name=/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41,
save_on_each_node=False,
save_steps=500,
save_strategy=steps,
save_total_limit=None,
seed=42,
sharded_ddp=[],
skip_memory_metrics=True,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
xpu_backend=None,
)
/home/ext_maiara_frodrigues2000_gmail_/.pyenv/versions/spokennlp/lib/python3.8/site-packages/datasets/load.py:2555: FutureWarning: 'ignore_verifications' was deprecated in favor of 'verification_mode' in version 2.9.1 and will be removed in 3.0.0.
You can remove this warning by passing 'verification_mode=no_checks' instead.
warnings.warn(
/home/ext_maiara_frodrigues2000_gmail_/.pyenv/versions/spokennlp/lib/python3.8/site-packages/datasets/load.py:929: FutureWarning: The repository for wiki_section_city contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at ./src/datasets/wiki_section_city/wiki_section_city.py
You can avoid this message in future by passing the argument `trust_remote_code=True`.
Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.
warnings.warn(
No config specified, defaulting to the single config: wiki_section_city/WikiSectionCityForDocumentSegmentation
06/19/2024 22:00:21 - INFO - datasets.builder - No config specified, defaulting to the single config: wiki_section_city/WikiSectionCityForDocumentSegmentation
Using custom data configuration WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad
06/19/2024 22:00:21 - INFO - datasets.builder - Using custom data configuration WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad
Loading Dataset Infos from /home/ext_luti4497_gmail_com/.cache/huggingface/modules/datasets_modules/datasets/wiki_section_city/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4
06/19/2024 22:00:21 - INFO - datasets.info - Loading Dataset Infos from /home/ext_luti4497_gmail_com/.cache/huggingface/modules/datasets_modules/datasets/wiki_section_city/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4
Generating dataset wiki_section_city (/projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4)
06/19/2024 22:00:21 - INFO - datasets.builder - Generating dataset wiki_section_city (/projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4)
Downloading and preparing dataset wiki_section_city/WikiSectionCityForDocumentSegmentation to /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4...
06/19/2024 22:00:21 - INFO - datasets.builder - Downloading and preparing dataset wiki_section_city/WikiSectionCityForDocumentSegmentation to /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4...
Downloading took 0.0 min
06/19/2024 22:00:21 - INFO - datasets.download.download_manager - Downloading took 0.0 min
Checksum Computation took 0.0 min
06/19/2024 22:00:21 - INFO - datasets.download.download_manager - Checksum Computation took 0.0 min
Generating train split
06/19/2024 22:00:21 - INFO - datasets.builder - Generating train split
Generating train split: 0 examples [00:00, ? examples/s]
Generating train split: 1 examples [00:00, 1.88 examples/s]
Generating train split: 174 examples [00:00, 366.96 examples/s]
Generating train split: 332 examples [00:00, 647.83 examples/s]
Generating train split: 497 examples [00:00, 889.10 examples/s]
Generating train split: 684 examples [00:00, 1141.68 examples/s]
Generating train split: 873 examples [00:01, 1341.00 examples/s]
Generating train split: 1086 examples [00:01, 1212.55 examples/s]
Generating train split: 1257 examples [00:01, 1324.98 examples/s]
Generating train split: 1459 examples [00:01, 1496.72 examples/s]
Generating train split: 1642 examples [00:01, 1581.27 examples/s]
Generating train split: 1815 examples [00:01, 1615.68 examples/s]
Generating train split: 2000 examples [00:01, 1338.66 examples/s]
Generating train split: 2170 examples [00:01, 1423.52 examples/s]
Generating train split: 2420 examples [00:02, 1504.76 examples/s]
Generating train split: 2632 examples [00:02, 1471.35 examples/s]
Generating train split: 2843 examples [00:02, 1619.36 examples/s]
Generating train split: 3074 examples [00:02, 1345.54 examples/s]
Generating train split: 3246 examples [00:02, 1419.60 examples/s]
Generating train split: 3444 examples [00:02, 1548.34 examples/s]
Generating train split: 3631 examples [00:02, 1622.73 examples/s]
Generating train split: 3807 examples [00:02, 1647.77 examples/s]
Generating train split: 4000 examples [00:03, 1339.79 examples/s]
Generating train split: 4221 examples [00:03, 1378.81 examples/s]
Generating train split: 4394 examples [00:03, 1450.17 examples/s]
Generating train split: 4581 examples [00:03, 1551.81 examples/s]
Generating train split: 4746 examples [00:03, 1577.15 examples/s]
Generating train split: 4915 examples [00:03, 1601.50 examples/s]
Generating train split: 5083 examples [00:03, 1406.14 examples/s]
Generating train split: 5256 examples [00:03, 1480.60 examples/s]
Generating train split: 5424 examples [00:04, 1525.76 examples/s]
Generating train split: 5615 examples [00:04, 1626.54 examples/s]
Generating train split: 5847 examples [00:04, 1819.32 examples/s]
Generating train split: 6096 examples [00:04, 1628.07 examples/s]
Generating train split: 6318 examples [00:04, 1772.44 examples/s]
Generating train split: 6511 examples [00:04, 1812.82 examples/s]
Generating train split: 6751 examples [00:04, 1732.66 examples/s]
Generating train split: 7000 examples [00:05, 1480.66 examples/s]
Generating train split: 7170 examples [00:05, 1525.90 examples/s]
Generating train split: 7335 examples [00:05, 1552.06 examples/s]
Generating train split: 7520 examples [00:05, 1614.80 examples/s]
Generating train split: 7698 examples [00:05, 1655.31 examples/s]
Generating train split: 7949 examples [00:05, 1657.55 examples/s]
Generating train split: 8177 examples [00:05, 1419.31 examples/s]
Generating train split: 8352 examples [00:05, 1484.50 examples/s]
Generating train split: 8512 examples [00:06, 1501.58 examples/s]
Generating train split: 8729 examples [00:06, 1667.42 examples/s]
Generating train split: 8910 examples [00:06, 1705.12 examples/s]
Generating train split: 9165 examples [00:06, 1438.58 examples/s]
Generating train split: 9330 examples [00:06, 1483.22 examples/s]
Generating train split: 9501 examples [00:06, 1533.76 examples/s]
Generating train split: 9668 examples [00:06, 1565.15 examples/s]
Generating train split: 9880 examples [00:06, 1712.02 examples/s]
Generating train split: 10074 examples [00:07, 1392.32 examples/s]
Generating train split: 10320 examples [00:07, 1464.61 examples/s]
Generating train split: 10484 examples [00:07, 1500.61 examples/s]
Generating train split: 10706 examples [00:07, 1488.11 examples/s]
Generating train split: 10890 examples [00:07, 1561.42 examples/s]
Generating train split: 11088 examples [00:07, 1344.40 examples/s]
Generating train split: 11272 examples [00:07, 1451.97 examples/s]
Generating train split: 11444 examples [00:07, 1510.27 examples/s]
Generating train split: 11637 examples [00:08, 1616.70 examples/s]
Generating train split: 11810 examples [00:08, 1644.38 examples/s]
Generating train split: 11996 examples [00:08, 1703.68 examples/s]
Generating train split: 12185 examples [00:08, 1474.44 examples/s]
Generating train split: 12353 examples [00:08, 1522.07 examples/s]
Generating train split: 12557 examples [00:08, 1656.48 examples/s]
Generating train split: 12739 examples [00:08, 1699.51 examples/s]
Generating train split: 12918 examples [00:08, 1721.07 examples/s]
Generating train split: 13182 examples [00:09, 1494.64 examples/s]
Generating train split: 13355 examples [00:09, 1549.45 examples/s]
Generating train split: 13579 examples [00:09, 1719.46 examples/s]
Generating train split: 13672 examples [00:09, 1464.90 examples/s]
Generating validation split
topic_segmentation
06/19/2024 22:00:31 - INFO - datasets.builder - Generating validation split
Generating validation split: 0 examples [00:00, ? examples/s]
Generating validation split: 69 examples [00:00, 579.82 examples/s]
Generating validation split: 218 examples [00:00, 1069.82 examples/s]
Generating validation split: 373 examples [00:00, 1276.30 examples/s]
Generating validation split: 520 examples [00:00, 1341.50 examples/s]
Generating validation split: 703 examples [00:00, 1510.53 examples/s]
Generating validation split: 881 examples [00:00, 1597.28 examples/s]
Generating validation split: 1071 examples [00:00, 1270.73 examples/s]
Generating validation split: 1274 examples [00:00, 1464.39 examples/s]
Generating validation split: 1467 examples [00:01, 1587.66 examples/s]
Generating validation split: 1713 examples [00:01, 1601.55 examples/s]
Generating validation split: 1906 examples [00:01, 1677.42 examples/s]
Generating validation split: 1950 examples [00:01, 1426.26 examples/s]
Generating test split
topic_segmentation
06/19/2024 22:00:32 - INFO - datasets.builder - Generating test split
Generating test split: 0 examples [00:00, ? examples/s]
Generating test split: 1 examples [00:00, 7.47 examples/s]
Generating test split: 159 examples [00:00, 810.44 examples/s]
Generating test split: 302 examples [00:00, 1066.26 examples/s]
Generating test split: 477 examples [00:00, 1316.18 examples/s]
Generating test split: 663 examples [00:00, 1501.87 examples/s]
Generating test split: 826 examples [00:00, 1538.20 examples/s]
Generating test split: 1000 examples [00:00, 1257.60 examples/s]
Generating test split: 1151 examples [00:00, 1322.06 examples/s]
Generating test split: 1322 examples [00:01, 1425.72 examples/s]
Generating test split: 1495 examples [00:01, 1508.46 examples/s]
Generating test split: 1683 examples [00:01, 1610.97 examples/s]
Generating test split: 1891 examples [00:01, 1745.28 examples/s]
Generating test split: 2077 examples [00:01, 1408.22 examples/s]
Generating test split: 2256 examples [00:01, 1500.50 examples/s]
Generating test split: 2427 examples [00:01, 1543.24 examples/s]
Generating test split: 2619 examples [00:01, 1644.22 examples/s]
Generating test split: 2837 examples [00:01, 1571.16 examples/s]
Generating test split: 3071 examples [00:02, 1378.60 examples/s]
Generating test split: 3265 examples [00:02, 1501.05 examples/s]
Generating test split: 3458 examples [00:02, 1601.68 examples/s]
Generating test split: 3718 examples [00:02, 1630.09 examples/s]
Generating test split: 3897 examples [00:02, 1666.47 examples/s]
Generating test split: 3904 examples [00:02, 1445.18 examples/s]
Dataset wiki_section_city downloaded and prepared to /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4. Subsequent calls will reuse this data.
topic_segmentation
06/19/2024 22:00:35 - INFO - datasets.builder - Dataset wiki_section_city downloaded and prepared to /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4. Subsequent calls will reuse this data.
[INFO|configuration_utils.py:658] 2024-06-19 22:00:36,128 >> loading configuration file /projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41/config.json
[INFO|configuration_utils.py:712] 2024-06-19 22:00:36,132 >> Model config BertConfig {
"_name_or_path": "/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41",
"architectures": [
"BertWithDAForSentenceLabelingTopicSegmentation"
],
"attention_probs_dropout_prob": 0.1,
"cache_dir": null,
"cl_anchor_level": "eop_list",
"cl_loss_weight": 0.5,
"cl_negative_k": 3,
"cl_positive_k": 1,
"cl_temp": 0.1,
"classifier_dropout": null,
"config_name": null,
"directionality": "bidi",
"do_cssl": true,
"do_da_ts": true,
"do_tssp": true,
"finetuning_task": "topic_segment",
"focal_loss_gamma": 0.0,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"id2label": {
"0": "B-EOP",
"1": "O"
},
"ignore_mismatched_sizes": false,
"initializer_range": 0.02,
"intermediate_size": 4096,
"label2id": {
"B-EOP": 0,
"O": 1
},
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_name_or_path": "neuralmind/bert-large-portuguese-cased",
"model_revision": "main",
"model_type": "bert",
"num_attention_heads": 16,
"num_gpu": 1,
"num_hidden_layers": 24,
"num_topic_labels": 0,
"num_tssp_labels": 3,
"output_past": true,
"pad_token_id": 0,
"pooler_fc_size": 768,
"pooler_num_attention_heads": 12,
"pooler_num_fc_layers": 3,
"pooler_size_per_head": 128,
"pooler_type": "first_token_transform",
"position_embedding_type": "absolute",
"sentence_pooler_type": null,
"tokenizer_name": null,
"torch_dtype": "float32",
"transformers_version": "4.26.0",
"ts_loss_weight": 1.0,
"ts_score_predictor": "lt",
"ts_score_predictor_cos_temp": 1,
"tssp_ablation": "none",
"tssp_loss_weight": 1.0,
"type_vocab_size": 2,
"use_auth_token": false,
"use_cache": true,
"vocab_size": 29795,
"weight_label_zero": 0.5
}
[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:00:36,145 >> loading file vocab.txt
[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:00:36,145 >> loading file tokenizer.json
[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:00:36,145 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:00:36,145 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:00:36,145 >> loading file tokenizer_config.json
[INFO|modeling_utils.py:2272] 2024-06-19 22:00:36,225 >> loading weights file /projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41/pytorch_model.bin
[INFO|modeling_utils.py:2857] 2024-06-19 22:01:00,370 >> All model checkpoint weights were used when initializing BertWithDAForSentenceLabelingTopicSegmentation.
[INFO|modeling_utils.py:2865] 2024-06-19 22:01:00,370 >> All the weights of BertWithDAForSentenceLabelingTopicSegmentation were initialized from the model checkpoint at /projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41.
If your task is similar to the task the model of the checkpoint was trained on, you can already use BertWithDAForSentenceLabelingTopicSegmentation for predictions without further training.
Process #0 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00000_of_00005.arrow
labels_are_int: False
label_to_id: {'B-EOP': 0, 'O': 1}
config: BertConfig {
"_name_or_path": "/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41",
"architectures": [
"BertWithDAForSentenceLabelingTopicSegmentation"
],
"attention_probs_dropout_prob": 0.1,
"cache_dir": null,
"cl_anchor_level": "eop_matrix",
"cl_loss_weight": 0.0,
"cl_negative_k": 1,
"cl_positive_k": 1,
"cl_temp": 1,
"classifier_dropout": null,
"config_name": null,
"directionality": "bidi",
"do_cssl": false,
"do_da_ts": false,
"do_tssp": false,
"finetuning_task": "topic_segment",
"focal_loss_gamma": 0.0,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"id2label": {
"0": "B-EOP",
"1": "O"
},
"ignore_mismatched_sizes": false,
"initializer_range": 0.02,
"intermediate_size": 4096,
"label2id": {
"B-EOP": 0,
"O": 1
},
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_name_or_path": "/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41",
"model_revision": "main",
"model_type": "bert",
"num_attention_heads": 16,
"num_gpu": 1,
"num_hidden_layers": 24,
"num_topic_labels": 0,
"num_tssp_labels": 3,
"output_past": true,
"pad_token_id": 0,
"pooler_fc_size": 768,
"pooler_num_attention_heads": 12,
"pooler_num_fc_layers": 3,
"pooler_size_per_head": 128,
"pooler_type": "first_token_transform",
"position_embedding_type": "absolute",
"sentence_pooler_type": null,
"tokenizer_name": null,
"torch_dtype": "float32",
"transformers_version": "4.26.0",
"ts_loss_weight": 1.0,
"ts_score_predictor": "lt",
"ts_score_predictor_cos_temp": 1,
"tssp_ablation": "none",
"tssp_loss_weight": 0.0,
"type_vocab_size": 2,
"use_auth_token": false,
"use_cache": true,
"vocab_size": 29795,
"weight_label_zero": 0.5
}
model_type: bert
final max_seq_length: 512
label_list: ['B-EOP', 'O']
06/19/2024 22:01:00 - INFO - datasets.arrow_dataset - Process #0 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00000_of_00005.arrow
Process #1 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00001_of_00005.arrow
06/19/2024 22:01:00 - INFO - datasets.arrow_dataset - Process #1 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00001_of_00005.arrow
Process #2 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00002_of_00005.arrow
06/19/2024 22:01:00 - INFO - datasets.arrow_dataset - Process #2 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00002_of_00005.arrow
Process #3 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00003_of_00005.arrow
06/19/2024 22:01:00 - INFO - datasets.arrow_dataset - Process #3 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00003_of_00005.arrow
Process #4 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00004_of_00005.arrow
06/19/2024 22:01:00 - INFO - datasets.arrow_dataset - Process #4 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00004_of_00005.arrow
Spawning 5 processes
06/19/2024 22:01:00 - INFO - datasets.arrow_dataset - Spawning 5 processes
Running tokenizer on prediction dataset (num_proc=5): 0%| | 0/3904 [00:00<?, ? examples/s]
Running tokenizer on prediction dataset (num_proc=5): 0%| | 0/3904 [00:08<?, ? examples/s]
0
06/19/2024 22:01:19 - WARNING - __main__ - Process rank: -1, device: cuda:0, n_gpu: 1distributed training: False, 16-bits training: False
06/19/2024 22:01:19 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_pin_memory=True,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
do_eval=False,
do_predict=True,
do_train=False,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
gradient_accumulation_steps=1,
gradient_checkpointing=False,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=5e-05,
length_column_name=length,
load_best_model_at_end=False,
local_rank=-1,
log_level=passive,
log_level_replica=passive,
log_on_each_node=True,
logging_dir=/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41/runs/Jun19_22-01-19_ppi-nlp6,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=steps,
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
no_cuda=False,
num_train_epochs=3.0,
optim=adamw_hf,
optim_args=None,
output_dir=/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41,
overwrite_output_dir=False,
past_index=-1,
per_device_eval_batch_size=4,
per_device_train_batch_size=8,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=[],
resume_from_checkpoint=None,
run_name=/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41,
save_on_each_node=False,
save_steps=500,
save_strategy=steps,
save_total_limit=None,
seed=42,
sharded_ddp=[],
skip_memory_metrics=True,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
xpu_backend=None,
)
/home/ext_maiara_frodrigues2000_gmail_/.pyenv/versions/spokennlp/lib/python3.8/site-packages/datasets/load.py:2555: FutureWarning: 'ignore_verifications' was deprecated in favor of 'verification_mode' in version 2.9.1 and will be removed in 3.0.0.
You can remove this warning by passing 'verification_mode=no_checks' instead.
warnings.warn(
/home/ext_maiara_frodrigues2000_gmail_/.pyenv/versions/spokennlp/lib/python3.8/site-packages/datasets/load.py:929: FutureWarning: The repository for wiki_section_city contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at ./src/datasets/wiki_section_city/wiki_section_city.py
You can avoid this message in future by passing the argument `trust_remote_code=True`.
Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.
warnings.warn(
No config specified, defaulting to the single config: wiki_section_city/WikiSectionCityForDocumentSegmentation
06/19/2024 22:01:19 - INFO - datasets.builder - No config specified, defaulting to the single config: wiki_section_city/WikiSectionCityForDocumentSegmentation
Using custom data configuration WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad
06/19/2024 22:01:19 - INFO - datasets.builder - Using custom data configuration WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad
Loading Dataset Infos from /home/ext_luti4497_gmail_com/.cache/huggingface/modules/datasets_modules/datasets/wiki_section_city/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4
06/19/2024 22:01:19 - INFO - datasets.info - Loading Dataset Infos from /home/ext_luti4497_gmail_com/.cache/huggingface/modules/datasets_modules/datasets/wiki_section_city/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4
Generating dataset wiki_section_city (/projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4)
06/19/2024 22:01:19 - INFO - datasets.builder - Generating dataset wiki_section_city (/projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4)
Downloading and preparing dataset wiki_section_city/WikiSectionCityForDocumentSegmentation to /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4...
06/19/2024 22:01:19 - INFO - datasets.builder - Downloading and preparing dataset wiki_section_city/WikiSectionCityForDocumentSegmentation to /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4...
Downloading took 0.0 min
06/19/2024 22:01:19 - INFO - datasets.download.download_manager - Downloading took 0.0 min
Checksum Computation took 0.0 min
06/19/2024 22:01:19 - INFO - datasets.download.download_manager - Checksum Computation took 0.0 min
Generating train split
06/19/2024 22:01:19 - INFO - datasets.builder - Generating train split
Generating train split: 0 examples [00:00, ? examples/s]
Generating train split: 1 examples [00:00, 1.86 examples/s]
Generating train split: 164 examples [00:00, 344.11 examples/s]
Generating train split: 327 examples [00:00, 640.15 examples/s]
Generating train split: 487 examples [00:00, 873.61 examples/s]
Generating train split: 676 examples [00:00, 1135.01 examples/s]
Generating train split: 865 examples [00:01, 1332.98 examples/s]
Generating train split: 1085 examples [00:01, 1203.80 examples/s]
Generating train split: 1249 examples [00:01, 1302.58 examples/s]
Generating train split: 1444 examples [00:01, 1462.41 examples/s]
Generating train split: 1623 examples [00:01, 1548.04 examples/s]
Generating train split: 1873 examples [00:01, 1581.85 examples/s]
Generating train split: 2088 examples [00:01, 1354.26 examples/s]
Generating train split: 2312 examples [00:02, 1394.05 examples/s]
Generating train split: 2488 examples [00:02, 1474.50 examples/s]
Generating train split: 2715 examples [00:02, 1477.61 examples/s]
Generating train split: 2901 examples [00:02, 1564.50 examples/s]
Generating train split: 3075 examples [00:02, 1305.09 examples/s]
Generating train split: 3244 examples [00:02, 1387.65 examples/s]
Generating train split: 3439 examples [00:02, 1520.39 examples/s]
Generating train split: 3612 examples [00:02, 1573.60 examples/s]
Generating train split: 3783 examples [00:03, 1607.63 examples/s]
Generating train split: 4000 examples [00:03, 1339.28 examples/s]
Generating train split: 4170 examples [00:03, 1418.57 examples/s]
Generating train split: 4362 examples [00:03, 1541.76 examples/s]
Generating train split: 4561 examples [00:03, 1657.36 examples/s]
Generating train split: 4740 examples [00:03, 1670.80 examples/s]
Generating train split: 4920 examples [00:03, 1704.66 examples/s]
Generating train split: 5191 examples [00:03, 1556.63 examples/s]
Generating train split: 5381 examples [00:04, 1638.00 examples/s]
Generating train split: 5553 examples [00:04, 1658.23 examples/s]
Generating train split: 5781 examples [00:04, 1823.54 examples/s]
Generating train split: 5979 examples [00:04, 1854.55 examples/s]
Generating train split: 6222 examples [00:04, 1685.10 examples/s]
Generating train split: 6410 examples [00:04, 1721.16 examples/s]
Generating train split: 6649 examples [00:04, 1673.17 examples/s]
Generating train split: 6887 examples [00:04, 1638.36 examples/s]
Generating train split: 7083 examples [00:05, 1427.36 examples/s]
Generating train split: 7245 examples [00:05, 1469.27 examples/s]
Generating train split: 7409 examples [00:05, 1508.98 examples/s]
Generating train split: 7593 examples [00:05, 1584.40 examples/s]
Generating train split: 7762 examples [00:05, 1609.11 examples/s]
Generating train split: 7937 examples [00:05, 1641.42 examples/s]
Generating train split: 8168 examples [00:05, 1348.83 examples/s]
Generating train split: 8322 examples [00:05, 1391.53 examples/s]
Generating train split: 8551 examples [00:06, 1432.31 examples/s]
Generating train split: 8771 examples [00:06, 1602.43 examples/s]
Generating train split: 8952 examples [00:06, 1646.20 examples/s]
Generating train split: 9160 examples [00:06, 1403.59 examples/s]
Generating train split: 9318 examples [00:06, 1438.63 examples/s]
Generating train split: 9489 examples [00:06, 1503.82 examples/s]
Generating train split: 9651 examples [00:06, 1526.44 examples/s]
Generating train split: 9857 examples [00:06, 1665.31 examples/s]
Generating train split: 10070 examples [00:07, 1373.33 examples/s]
Generating train split: 10315 examples [00:07, 1442.57 examples/s]
Generating train split: 10479 examples [00:07, 1485.39 examples/s]
Generating train split: 10704 examples [00:07, 1483.83 examples/s]
Generating train split: 10894 examples [00:07, 1577.27 examples/s]
Generating train split: 11092 examples [00:07, 1361.95 examples/s]
Generating train split: 11277 examples [00:07, 1468.39 examples/s]
Generating train split: 11445 examples [00:08, 1516.88 examples/s]
Generating train split: 11632 examples [00:08, 1600.38 examples/s]
Generating train split: 11807 examples [00:08, 1633.90 examples/s]
Generating train split: 11993 examples [00:08, 1693.04 examples/s]
Generating train split: 12178 examples [00:08, 1428.25 examples/s]
Generating train split: 12338 examples [00:08, 1445.53 examples/s]
Generating train split: 12543 examples [00:08, 1600.38 examples/s]
Generating train split: 12734 examples [00:08, 1673.56 examples/s]
Generating train split: 12919 examples [00:08, 1718.61 examples/s]
Generating train split: 13173 examples [00:09, 1473.04 examples/s]
Generating train split: 13349 examples [00:09, 1539.35 examples/s]
Generating train split: 13549 examples [00:09, 1642.87 examples/s]
Generating train split: 13672 examples [00:09, 1454.41 examples/s]
Generating validation split
topic_segmentation
06/19/2024 22:01:28 - INFO - datasets.builder - Generating validation split
Generating validation split: 0 examples [00:00, ? examples/s]
Generating validation split: 69 examples [00:00, 608.54 examples/s]
Generating validation split: 217 examples [00:00, 1089.66 examples/s]
Generating validation split: 367 examples [00:00, 1264.36 examples/s]
Generating validation split: 524 examples [00:00, 1378.19 examples/s]
Generating validation split: 703 examples [00:00, 1519.31 examples/s]
Generating validation split: 869 examples [00:00, 1565.22 examples/s]
Generating validation split: 1068 examples [00:00, 1252.69 examples/s]
Generating validation split: 1271 examples [00:00, 1448.10 examples/s]
Generating validation split: 1464 examples [00:01, 1575.39 examples/s]
Generating validation split: 1713 examples [00:01, 1595.15 examples/s]
Generating validation split: 1906 examples [00:01, 1673.40 examples/s]
Generating validation split: 1950 examples [00:01, 1431.59 examples/s]
Generating test split
topic_segmentation
06/19/2024 22:01:30 - INFO - datasets.builder - Generating test split
Generating test split: 0 examples [00:00, ? examples/s]
Generating test split: 1 examples [00:00, 8.19 examples/s]
Generating test split: 155 examples [00:00, 825.12 examples/s]
Generating test split: 295 examples [00:00, 1071.91 examples/s]
Generating test split: 465 examples [00:00, 1308.99 examples/s]
Generating test split: 648 examples [00:00, 1489.93 examples/s]
Generating test split: 814 examples [00:00, 1542.01 examples/s]
Generating test split: 986 examples [00:00, 1591.45 examples/s]
Generating test split: 1152 examples [00:00, 1267.31 examples/s]
Generating test split: 1321 examples [00:01, 1376.15 examples/s]
Generating test split: 1495 examples [00:01, 1471.51 examples/s]
Generating test split: 1682 examples [00:01, 1579.17 examples/s]
Generating test split: 1882 examples [00:01, 1693.42 examples/s]
Generating test split: 2077 examples [00:01, 1402.70 examples/s]
Generating test split: 2257 examples [00:01, 1499.42 examples/s]
Generating test split: 2425 examples [00:01, 1540.54 examples/s]
Generating test split: 2609 examples [00:01, 1616.79 examples/s]
Generating test split: 2835 examples [00:01, 1568.50 examples/s]
Generating test split: 3000 examples [00:02, 1364.80 examples/s]
Generating test split: 3162 examples [00:02, 1425.57 examples/s]
Generating test split: 3367 examples [00:02, 1584.11 examples/s]
Generating test split: 3589 examples [00:02, 1523.09 examples/s]
Generating test split: 3752 examples [00:02, 1546.15 examples/s]
Generating test split: 3904 examples [00:02, 1420.90 examples/s]
Dataset wiki_section_city downloaded and prepared to /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4. Subsequent calls will reuse this data.
topic_segmentation
06/19/2024 22:01:32 - INFO - datasets.builder - Dataset wiki_section_city downloaded and prepared to /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4. Subsequent calls will reuse this data.
[INFO|configuration_utils.py:658] 2024-06-19 22:01:33,637 >> loading configuration file /projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41/config.json
[INFO|configuration_utils.py:712] 2024-06-19 22:01:33,641 >> Model config BertConfig {
"_name_or_path": "/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41",
"architectures": [
"BertWithDAForSentenceLabelingTopicSegmentation"
],
"attention_probs_dropout_prob": 0.1,
"cache_dir": null,
"cl_anchor_level": "eop_list",
"cl_loss_weight": 0.5,
"cl_negative_k": 3,
"cl_positive_k": 1,
"cl_temp": 0.1,
"classifier_dropout": null,
"config_name": null,
"directionality": "bidi",
"do_cssl": true,
"do_da_ts": true,
"do_tssp": true,
"finetuning_task": "topic_segment",
"focal_loss_gamma": 0.0,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"id2label": {
"0": "B-EOP",
"1": "O"
},
"ignore_mismatched_sizes": false,
"initializer_range": 0.02,
"intermediate_size": 4096,
"label2id": {
"B-EOP": 0,
"O": 1
},
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_name_or_path": "neuralmind/bert-large-portuguese-cased",
"model_revision": "main",
"model_type": "bert",
"num_attention_heads": 16,
"num_gpu": 1,
"num_hidden_layers": 24,
"num_topic_labels": 0,
"num_tssp_labels": 3,
"output_past": true,
"pad_token_id": 0,
"pooler_fc_size": 768,
"pooler_num_attention_heads": 12,
"pooler_num_fc_layers": 3,
"pooler_size_per_head": 128,
"pooler_type": "first_token_transform",
"position_embedding_type": "absolute",
"sentence_pooler_type": null,
"tokenizer_name": null,
"torch_dtype": "float32",
"transformers_version": "4.26.0",
"ts_loss_weight": 1.0,
"ts_score_predictor": "lt",
"ts_score_predictor_cos_temp": 1,
"tssp_ablation": "none",
"tssp_loss_weight": 1.0,
"type_vocab_size": 2,
"use_auth_token": false,
"use_cache": true,
"vocab_size": 29795,
"weight_label_zero": 0.5
}
[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:01:33,643 >> loading file vocab.txt
[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:01:33,643 >> loading file tokenizer.json
[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:01:33,643 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:01:33,643 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:01:33,643 >> loading file tokenizer_config.json
[INFO|modeling_utils.py:2272] 2024-06-19 22:01:33,668 >> loading weights file /projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41/pytorch_model.bin
[INFO|modeling_utils.py:2857] 2024-06-19 22:01:37,435 >> All model checkpoint weights were used when initializing BertWithDAForSentenceLabelingTopicSegmentation.
[INFO|modeling_utils.py:2865] 2024-06-19 22:01:37,436 >> All the weights of BertWithDAForSentenceLabelingTopicSegmentation were initialized from the model checkpoint at /projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41.
If your task is similar to the task the model of the checkpoint was trained on, you can already use BertWithDAForSentenceLabelingTopicSegmentation for predictions without further training.
Process #0 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00000_of_00005.arrow
labels_are_int: False
label_to_id: {'B-EOP': 0, 'O': 1}
config: BertConfig {
"_name_or_path": "/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41",
"architectures": [
"BertWithDAForSentenceLabelingTopicSegmentation"
],
"attention_probs_dropout_prob": 0.1,
"cache_dir": null,
"cl_anchor_level": "eop_matrix",
"cl_loss_weight": 0.0,
"cl_negative_k": 1,
"cl_positive_k": 1,
"cl_temp": 1,
"classifier_dropout": null,
"config_name": null,
"directionality": "bidi",
"do_cssl": false,
"do_da_ts": false,
"do_tssp": false,
"finetuning_task": "topic_segment",
"focal_loss_gamma": 0.0,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"id2label": {
"0": "B-EOP",
"1": "O"
},
"ignore_mismatched_sizes": false,
"initializer_range": 0.02,
"intermediate_size": 4096,
"label2id": {
"B-EOP": 0,
"O": 1
},
"layer_norm_eps": 1e-12,
"max_position_embeddings": 512,
"model_name_or_path": "/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41",
"model_revision": "main",
"model_type": "bert",
"num_attention_heads": 16,
"num_gpu": 1,
"num_hidden_layers": 24,
"num_topic_labels": 0,
"num_tssp_labels": 3,
"output_past": true,
"pad_token_id": 0,
"pooler_fc_size": 768,
"pooler_num_attention_heads": 12,
"pooler_num_fc_layers": 3,
"pooler_size_per_head": 128,
"pooler_type": "first_token_transform",
"position_embedding_type": "absolute",
"sentence_pooler_type": null,
"tokenizer_name": null,
"torch_dtype": "float32",
"transformers_version": "4.26.0",
"ts_loss_weight": 1.0,
"ts_score_predictor": "lt",
"ts_score_predictor_cos_temp": 1,
"tssp_ablation": "none",
"tssp_loss_weight": 0.0,
"type_vocab_size": 2,
"use_auth_token": false,
"use_cache": true,
"vocab_size": 29795,
"weight_label_zero": 0.5
}
model_type: bert
final max_seq_length: 512
label_list: ['B-EOP', 'O']
06/19/2024 22:01:37 - INFO - datasets.arrow_dataset - Process #0 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00000_of_00005.arrow
Process #1 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00001_of_00005.arrow
06/19/2024 22:01:37 - INFO - datasets.arrow_dataset - Process #1 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00001_of_00005.arrow
Process #2 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00002_of_00005.arrow
06/19/2024 22:01:37 - INFO - datasets.arrow_dataset - Process #2 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00002_of_00005.arrow
Process #3 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00003_of_00005.arrow
06/19/2024 22:01:37 - INFO - datasets.arrow_dataset - Process #3 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00003_of_00005.arrow
Process #4 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00004_of_00005.arrow
06/19/2024 22:01:37 - INFO - datasets.arrow_dataset - Process #4 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00004_of_00005.arrow
Spawning 5 processes
06/19/2024 22:01:37 - INFO - datasets.arrow_dataset - Spawning 5 processes
Running tokenizer on prediction dataset (num_proc=5): 0%| | 0/3904 [00:00<?, ? examples/s]Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00004_of_00005.arrow
06/19/2024 22:01:58 - INFO - datasets.arrow_dataset - Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00004_of_00005.arrow
Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00002_of_00005.arrow
06/19/2024 22:01:59 - INFO - datasets.arrow_dataset - Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00002_of_00005.arrow
Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00001_of_00005.arrow
06/19/2024 22:02:00 - INFO - datasets.arrow_dataset - Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00001_of_00005.arrow
Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00003_of_00005.arrow
06/19/2024 22:02:00 - INFO - datasets.arrow_dataset - Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00003_of_00005.arrow
Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00000_of_00005.arrow
06/19/2024 22:02:01 - INFO - datasets.arrow_dataset - Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00000_of_00005.arrow
Running tokenizer on prediction dataset (num_proc=5): 20%|ββ | 780/3904 [00:31<02:05, 24.91 examples/s]
Running tokenizer on prediction dataset (num_proc=5): 60%|ββββββ | 2342/3904 [00:32<00:16, 92.11 examples/s]
Running tokenizer on prediction dataset (num_proc=5): 80%|ββββββββ | 3123/3904 [00:32<00:05, 136.98 examples/s]
Running tokenizer on prediction dataset (num_proc=5): 100%|ββββββββββ| 3904/3904 [00:33<00:00, 193.46 examples/s]
Running tokenizer on prediction dataset (num_proc=5): 100%|ββββββββββ| 3904/3904 [00:38<00:00, 101.32 examples/s]
Concatenating 5 shards
06/19/2024 22:02:16 - INFO - datasets.arrow_dataset - Concatenating 5 shards
06/19/2024 22:02:19 - INFO - __main__ - *** Predict test set ***
./src/ts_sentence_seq_labeling.py:1017: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library π€ Evaluate: https://huggingface.co/docs/evaluate
metric = load_metric(data_args.metric_name)
/home/ext_maiara_frodrigues2000_gmail_/.pyenv/versions/spokennlp/lib/python3.8/site-packages/datasets/load.py:855: FutureWarning: The repository for seqeval contains custom code which must be executed to correctly load the metric. You can inspect the repository content at ./src/metrics/seqeval.py
You can avoid this message in future by passing the argument `trust_remote_code=True`.
Passing `trust_remote_code=True` will be mandatory to load this metric from the next major release of `datasets`.
warnings.warn(
[INFO|trainer.py:710] 2024-06-19 22:02:21,579 >> The following columns in the test set don't have a corresponding argument in `BertWithDAForSentenceLabelingTopicSegmentation.forward` and have been ignored: sentences, example_id. If sentences, example_id are not expected by `BertWithDAForSentenceLabelingTopicSegmentation.forward`, you can safely ignore this message.
[INFO|trainer.py:2964] 2024-06-19 22:02:21,586 >> ***** Running Prediction *****
[INFO|trainer.py:2966] 2024-06-19 22:02:21,586 >> Num examples = 15271
[INFO|trainer.py:2969] 2024-06-19 22:02:21,586 >> Batch size = 4
num predict samples: 15271
num predict examples: 3904
0%| | 0/3818 [00:00<?, ?it/s]
0%| | 2/3818 [00:00<12:30, 5.08it/s]
0%| | 3/3818 [00:00<17:54, 3.55it/s]
0%| | 4/3818 [00:01<20:32, 3.09it/s]
0%| | 5/3818 [00:01<22:04, 2.88it/s]
0%| | 6/3818 [00:01<23:08, 2.74it/s]
0%| | 7/3818 [00:02<23:44, 2.68it/s]
0%| | 8/3818 [00:02<24:11, 2.63it/s]
0%| | 9/3818 [00:03<24:28, 2.59it/s]
0%| | 10/3818 [00:03<24:36, 2.58it/s]
0%| | 11/3818 [00:03<24:46, 2.56it/s]
0%| | 12/3818 [00:04<24:55, 2.54it/s]
0%| | 13/3818 [00:04<24:59, 2.54it/s]
0%| | 14/3818 [00:05<25:07, 2.52it/s]
0%| | 15/3818 [00:05<25:08, 2.52it/s]
0%| | 16/3818 [00:05<25:07, 2.52it/s]
0%| | 17/3818 [00:06<25:14, 2.51it/s]
0%| | 18/3818 [00:06<25:11, 2.51it/s]
0%| | 19/3818 [00:07<25:13, 2.51it/s]
1%| | 20/3818 [00:07<25:15, 2.51it/s]
1%| | 21/3818 [00:07<25:13, 2.51it/s]
1%| | 22/3818 [00:08<25:10, 2.51it/s]
1%| | 23/3818 [00:08<25:17, 2.50it/s]
1%| | 24/3818 [00:09<25:18, 2.50it/s]
1%| | 25/3818 [00:09<25:19, 2.50it/s]
1%| | 26/3818 [00:09<25:21, 2.49it/s]
1%| | 27/3818 [00:10<25:17, 2.50it/s]
1%| | 28/3818 [00:10<25:19, 2.49it/s]
1%| | 29/3818 [00:11<25:21, 2.49it/s]
1%| | 30/3818 [00:11<25:18, 2.49it/s]
1%| | 31/3818 [00:11<25:18, 2.49it/s]
1%| | 32/3818 [00:12<25:21, 2.49it/s]
1%| | 33/3818 [00:12<25:20, 2.49it/s]
1%| | 34/3818 [00:13<25:16, 2.49it/s]
1%| | 35/3818 [00:13<25:17, 2.49it/s]
1%| | 36/3818 [00:13<25:25, 2.48it/s]
1%| | 37/3818 [00:14<25:23, 2.48it/s]
1%| | 38/3818 [00:14<25:25, 2.48it/s]
1%| | 39/3818 [00:15<25:24, 2.48it/s]
1%| | 40/3818 [00:15<25:23, 2.48it/s]
1%| | 41/3818 [00:15<25:26, 2.47it/s]
1%| | 42/3818 [00:16<25:25, 2.47it/s]
1%| | 43/3818 [00:16<25:27, 2.47it/s]
1%| | 44/3818 [00:17<25:25, 2.47it/s]
1%| | 45/3818 [00:17<25:25, 2.47it/s]
1%| | 46/3818 [00:18<25:30, 2.46it/s]
1%| | 47/3818 [00:18<25:25, 2.47it/s]
1%|β | 48/3818 [00:18<25:25, 2.47it/s]
1%|β | 49/3818 [00:19<25:26, 2.47it/s]
1%|β | 50/3818 [00:19<25:22, 2.47it/s]
1%|β | 51/3818 [00:20<25:27, 2.47it/s]
1%|β | 52/3818 [00:20<25:27, 2.46it/s]
1%|β | 53/3818 [00:20<25:28, 2.46it/s]
1%|β | 54/3818 [00:21<25:22, 2.47it/s]
1%|β | 55/3818 [00:21<25:19, 2.48it/s]
1%|β | 56/3818 [00:22<25:19, 2.48it/s]
1%|β | 57/3818 [00:22<25:18, 2.48it/s]
2%|β | 58/3818 [00:22<25:18, 2.48it/s]
2%|β | 59/3818 [00:23<25:19, 2.47it/s]
2%|β | 60/3818 [00:23<25:19, 2.47it/s]
2%|β | 61/3818 [00:24<25:18, 2.47it/s]
2%|β | 62/3818 [00:24<25:21, 2.47it/s]
2%|β | 63/3818 [00:24<25:22, 2.47it/s]
2%|β | 64/3818 [00:25<25:20, 2.47it/s]
2%|β | 65/3818 [00:25<25:21, 2.47it/s]
2%|β | 66/3818 [00:26<25:17, 2.47it/s]
2%|β | 67/3818 [00:26<25:19, 2.47it/s]
2%|β | 68/3818 [00:26<25:18, 2.47it/s]
2%|β | 69/3818 [00:27<25:13, 2.48it/s]
2%|β | 70/3818 [00:27<25:19, 2.47it/s]
2%|β | 71/3818 [00:28<25:20, 2.46it/s]
2%|β | 72/3818 [00:28<25:19, 2.46it/s]
2%|β | 73/3818 [00:28<25:27, 2.45it/s]
2%|β | 74/3818 [00:29<25:23, 2.46it/s]
2%|β | 75/3818 [00:29<25:25, 2.45it/s]
2%|β | 76/3818 [00:30<25:23, 2.46it/s]
2%|β | 77/3818 [00:30<25:18, 2.46it/s]
2%|β | 78/3818 [00:30<25:21, 2.46it/s]
2%|β | 79/3818 [00:31<25:19, 2.46it/s]
2%|β | 80/3818 [00:31<25:24, 2.45it/s]
2%|β | 81/3818 [00:32<25:24, 2.45it/s]
2%|β | 82/3818 [00:32<25:24, 2.45it/s]
2%|β | 83/3818 [00:33<25:24, 2.45it/s]
2%|β | 84/3818 [00:33<25:20, 2.46it/s]
2%|β | 85/3818 [00:33<25:20, 2.45it/s]
2%|β | 86/3818 [00:34<25:24, 2.45it/s]
2%|β | 87/3818 [00:34<25:25, 2.45it/s]
2%|β | 88/3818 [00:35<25:26, 2.44it/s]
2%|β | 89/3818 [00:35<25:26, 2.44it/s]
2%|β | 90/3818 [00:35<25:28, 2.44it/s]
2%|β | 91/3818 [00:36<25:28, 2.44it/s]
2%|β | 92/3818 [00:36<25:26, 2.44it/s]
2%|β | 93/3818 [00:37<25:27, 2.44it/s]
2%|β | 94/3818 [00:37<25:25, 2.44it/s]
2%|β | 95/3818 [00:37<25:28, 2.44it/s]
3%|β | 96/3818 [00:38<25:31, 2.43it/s]
3%|β | 97/3818 [00:38<25:37, 2.42it/s]
3%|β | 98/3818 [00:39<25:35, 2.42it/s]
3%|β | 99/3818 [00:39<25:32, 2.43it/s]
3%|β | 100/3818 [00:40<25:28, 2.43it/s]
3%|β | 101/3818 [00:40<25:33, 2.42it/s]
3%|β | 102/3818 [00:40<25:30, 2.43it/s]
3%|β | 103/3818 [00:41<25:25, 2.44it/s]
3%|β | 104/3818 [00:41<25:26, 2.43it/s]
3%|β | 105/3818 [00:42<25:27, 2.43it/s]
3%|β | 106/3818 [00:42<25:24, 2.44it/s]
3%|β | 107/3818 [00:42<25:30, 2.43it/s]
3%|β | 108/3818 [00:43<25:27, 2.43it/s]
3%|β | 109/3818 [00:43<25:29, 2.43it/s]
3%|β | 110/3818 [00:44<25:29, 2.42it/s]
3%|β | 111/3818 [00:44<25:28, 2.42it/s]
3%|β | 112/3818 [00:44<25:33, 2.42it/s]
3%|β | 113/3818 [00:45<25:30, 2.42it/s]
3%|β | 114/3818 [00:45<25:25, 2.43it/s]
3%|β | 115/3818 [00:46<25:30, 2.42it/s]
3%|β | 116/3818 [00:46<25:30, 2.42it/s]
3%|β | 117/3818 [00:47<25:34, 2.41it/s]
3%|β | 118/3818 [00:47<25:34, 2.41it/s]
3%|β | 119/3818 [00:47<25:33, 2.41it/s]
3%|β | 120/3818 [00:48<25:36, 2.41it/s]
3%|β | 121/3818 [00:48<25:30, 2.42it/s]
3%|β | 122/3818 [00:49<25:31, 2.41it/s]
3%|β | 123/3818 [00:49<25:32, 2.41it/s]
3%|β | 124/3818 [00:49<25:30, 2.41it/s]
3%|β | 125/3818 [00:50<25:32, 2.41it/s]
3%|β | 126/3818 [00:50<25:29, 2.41it/s]
3%|β | 127/3818 [00:51<25:35, 2.40it/s]
3%|β | 128/3818 [00:51<25:33, 2.41it/s]
3%|β | 129/3818 [00:52<25:35, 2.40it/s]
3%|β | 130/3818 [00:52<25:34, 2.40it/s]
3%|β | 131/3818 [00:52<25:36, 2.40it/s]
3%|β | 132/3818 [00:53<25:39, 2.39it/s]
3%|β | 133/3818 [00:53<25:36, 2.40it/s]
4%|β | 134/3818 [00:54<25:42, 2.39it/s]
4%|β | 135/3818 [00:54<25:39, 2.39it/s]
4%|β | 136/3818 [00:54<25:41, 2.39it/s]
4%|β | 137/3818 [00:55<25:39, 2.39it/s]
4%|β | 138/3818 [00:55<25:38, 2.39it/s]
4%|β | 139/3818 [00:56<25:40, 2.39it/s]
4%|β | 140/3818 [00:56<25:39, 2.39it/s]
4%|β | 141/3818 [00:57<25:36, 2.39it/s]
4%|β | 142/3818 [00:57<25:40, 2.39it/s]
4%|β | 143/3818 [00:57<25:42, 2.38it/s]
4%|β | 144/3818 [00:58<25:40, 2.38it/s]
4%|β | 145/3818 [00:58<25:36, 2.39it/s]
4%|β | 146/3818 [00:59<25:37, 2.39it/s]
4%|β | 147/3818 [00:59<25:39, 2.38it/s]
4%|β | 148/3818 [00:59<25:41, 2.38it/s]
4%|β | 149/3818 [01:00<25:40, 2.38it/s]
4%|β | 150/3818 [01:00<25:40, 2.38it/s]
4%|β | 151/3818 [01:01<25:41, 2.38it/s]
4%|β | 152/3818 [01:01<25:42, 2.38it/s]
4%|β | 153/3818 [01:02<25:43, 2.38it/s]
4%|β | 154/3818 [01:02<25:41, 2.38it/s]
4%|β | 155/3818 [01:02<25:42, 2.38it/s]
4%|β | 156/3818 [01:03<25:37, 2.38it/s]
4%|β | 157/3818 [01:03<25:33, 2.39it/s]
4%|β | 158/3818 [01:04<25:29, 2.39it/s]
4%|β | 159/3818 [01:04<25:24, 2.40it/s]
4%|β | 160/3818 [01:04<25:22, 2.40it/s]
4%|β | 161/3818 [01:05<25:20, 2.40it/s]
4%|β | 162/3818 [01:05<25:23, 2.40it/s]
4%|β | 163/3818 [01:06<25:19, 2.41it/s]
4%|β | 164/3818 [01:06<25:23, 2.40it/s]
4%|β | 165/3818 [01:07<25:20, 2.40it/s]
4%|β | 166/3818 [01:07<25:21, 2.40it/s]
4%|β | 167/3818 [01:07<25:23, 2.40it/s]
4%|β | 168/3818 [01:08<25:21, 2.40it/s]
4%|β | 169/3818 [01:08<25:24, 2.39it/s]
4%|β | 170/3818 [01:09<25:22, 2.40it/s]
4%|β | 171/3818 [01:09<25:19, 2.40it/s]
5%|β | 172/3818 [01:09<25:18, 2.40it/s]
5%|β | 173/3818 [01:10<25:16, 2.40it/s]
5%|β | 174/3818 [01:10<25:19, 2.40it/s]
5%|β | 175/3818 [01:11<25:21, 2.39it/s]
5%|β | 176/3818 [01:11<25:16, 2.40it/s]
5%|β | 177/3818 [01:12<25:21, 2.39it/s]
5%|β | 178/3818 [01:12<25:23, 2.39it/s]
5%|β | 179/3818 [01:12<25:22, 2.39it/s]
5%|β | 180/3818 [01:13<25:22, 2.39it/s]
5%|β | 181/3818 [01:13<25:19, 2.39it/s]
5%|β | 182/3818 [01:14<25:21, 2.39it/s]
5%|β | 183/3818 [01:14<25:21, 2.39it/s]
5%|β | 184/3818 [01:15<25:21, 2.39it/s]
5%|β | 185/3818 [01:15<25:25, 2.38it/s]
5%|β | 186/3818 [01:15<25:23, 2.38it/s]
5%|β | 187/3818 [01:16<25:26, 2.38it/s]
5%|β | 188/3818 [01:16<25:25, 2.38it/s]
5%|β | 189/3818 [01:17<25:25, 2.38it/s]
5%|β | 190/3818 [01:17<25:26, 2.38it/s]
5%|β | 191/3818 [01:17<25:22, 2.38it/s]
5%|β | 192/3818 [01:18<25:25, 2.38it/s]
5%|β | 193/3818 [01:18<25:27, 2.37it/s]
5%|β | 194/3818 [01:19<25:26, 2.37it/s]
5%|β | 195/3818 [01:19<25:29, 2.37it/s]
5%|β | 196/3818 [01:20<25:27, 2.37it/s]
5%|β | 197/3818 [01:20<25:26, 2.37it/s]
5%|β | 198/3818 [01:20<25:24, 2.37it/s]
5%|β | 199/3818 [01:21<25:26, 2.37it/s]
5%|β | 200/3818 [01:21<25:28, 2.37it/s]
5%|β | 201/3818 [01:22<25:31, 2.36it/s]
5%|β | 202/3818 [01:22<25:30, 2.36it/s]
5%|β | 203/3818 [01:23<25:30, 2.36it/s]
5%|β | 204/3818 [01:23<25:31, 2.36it/s]
5%|β | 205/3818 [01:23<25:31, 2.36it/s]
5%|β | 206/3818 [01:24<25:28, 2.36it/s]
5%|β | 207/3818 [01:24<25:30, 2.36it/s]
5%|β | 208/3818 [01:25<25:28, 2.36it/s]
5%|β | 209/3818 [01:25<25:29, 2.36it/s]
6%|β | 210/3818 [01:25<25:28, 2.36it/s]
6%|β | 211/3818 [01:26<25:29, 2.36it/s]
6%|β | 212/3818 [01:26<25:29, 2.36it/s]
6%|β | 213/3818 [01:27<25:29, 2.36it/s]
6%|β | 214/3818 [01:27<25:26, 2.36it/s]
6%|β | 215/3818 [01:28<25:26, 2.36it/s]
6%|β | 216/3818 [01:28<25:25, 2.36it/s]
6%|β | 217/3818 [01:28<25:26, 2.36it/s]
6%|β | 218/3818 [01:29<25:24, 2.36it/s]
6%|β | 219/3818 [01:29<25:23, 2.36it/s]
6%|β | 220/3818 [01:30<25:24, 2.36it/s]
6%|β | 221/3818 [01:30<25:25, 2.36it/s]
6%|β | 222/3818 [01:31<25:27, 2.35it/s]
6%|β | 223/3818 [01:31<25:23, 2.36it/s]
6%|β | 224/3818 [01:31<25:26, 2.35it/s]
6%|β | 225/3818 [01:32<25:24, 2.36it/s]
6%|β | 226/3818 [01:32<25:21, 2.36it/s]
6%|β | 227/3818 [01:33<25:24, 2.36it/s]
6%|β | 228/3818 [01:33<25:21, 2.36it/s]
6%|β | 229/3818 [01:34<25:24, 2.35it/s]
6%|β | 230/3818 [01:34<25:22, 2.36it/s]
6%|β | 231/3818 [01:34<25:24, 2.35it/s]
6%|β | 232/3818 [01:35<25:22, 2.36it/s]
6%|β | 233/3818 [01:35<25:21, 2.36it/s]
6%|β | 234/3818 [01:36<25:25, 2.35it/s]
6%|β | 235/3818 [01:36<25:24, 2.35it/s]
6%|β | 236/3818 [01:37<25:27, 2.34it/s]
6%|β | 237/3818 [01:37<25:28, 2.34it/s]
6%|β | 238/3818 [01:37<25:26, 2.35it/s]
6%|β | 239/3818 [01:38<25:29, 2.34it/s]
6%|β | 240/3818 [01:38<25:26, 2.34it/s]
6%|β | 241/3818 [01:39<25:29, 2.34it/s]
6%|β | 242/3818 [01:39<25:28, 2.34it/s]
6%|β | 243/3818 [01:40<25:26, 2.34it/s]
6%|β | 244/3818 [01:40<25:26, 2.34it/s]
6%|β | 245/3818 [01:40<25:26, 2.34it/s]
6%|β | 246/3818 [01:41<25:27, 2.34it/s]
6%|β | 247/3818 [01:41<25:29, 2.34it/s]
6%|β | 248/3818 [01:42<25:29, 2.33it/s]
7%|β | 249/3818 [01:42<25:32, 2.33it/s]
7%|β | 250/3818 [01:43<25:32, 2.33it/s]
7%|β | 251/3818 [01:43<25:33, 2.33it/s]
7%|β | 252/3818 [01:43<25:36, 2.32it/s]
7%|β | 253/3818 [01:44<25:34, 2.32it/s]
7%|β | 254/3818 [01:44<25:33, 2.32it/s]
7%|β | 255/3818 [01:45<25:31, 2.33it/s]
7%|β | 256/3818 [01:45<25:30, 2.33it/s]
7%|β | 257/3818 [01:46<25:32, 2.32it/s]
7%|β | 258/3818 [01:46<25:33, 2.32it/s]
7%|β | 259/3818 [01:46<25:34, 2.32it/s]
7%|β | 260/3818 [01:47<25:33, 2.32it/s]
7%|β | 261/3818 [01:47<25:31, 2.32it/s]
7%|β | 262/3818 [01:48<25:30, 2.32it/s]
7%|β | 263/3818 [01:48<25:32, 2.32it/s]
7%|β | 264/3818 [01:49<25:31, 2.32it/s]
7%|β | 265/3818 [01:49<25:34, 2.32it/s]
7%|β | 266/3818 [01:49<25:32, 2.32it/s]
7%|β | 267/3818 [01:50<25:31, 2.32it/s]
7%|β | 268/3818 [01:50<25:35, 2.31it/s]
7%|β | 269/3818 [01:51<25:30, 2.32it/s]
7%|β | 270/3818 [01:51<25:33, 2.31it/s]
7%|β | 271/3818 [01:52<25:33, 2.31it/s]
7%|β | 272/3818 [01:52<25:33, 2.31it/s]
7%|β | 273/3818 [01:52<25:33, 2.31it/s]
7%|β | 274/3818 [01:53<25:31, 2.31it/s]
7%|β | 275/3818 [01:53<25:35, 2.31it/s]
7%|β | 276/3818 [01:54<25:33, 2.31it/s]
7%|β | 277/3818 [01:54<25:34, 2.31it/s]
7%|β | 278/3818 [01:55<25:33, 2.31it/s]
7%|β | 279/3818 [01:55<25:30, 2.31it/s]
7%|β | 280/3818 [01:55<25:31, 2.31it/s]
7%|β | 281/3818 [01:56<25:28, 2.31it/s]
7%|β | 282/3818 [01:56<25:33, 2.31it/s]
7%|β | 283/3818 [01:57<25:31, 2.31it/s]
7%|β | 284/3818 [01:57<25:33, 2.30it/s]
7%|β | 285/3818 [01:58<25:31, 2.31it/s]
7%|β | 286/3818 [01:58<25:30, 2.31it/s]
8%|β | 287/3818 [01:59<25:32, 2.30it/s]
8%|β | 288/3818 [01:59<25:32, 2.30it/s]
8%|β | 289/3818 [01:59<25:31, 2.30it/s]
8%|β | 290/3818 [02:00<25:29, 2.31it/s]
8%|β | 291/3818 [02:00<25:30, 2.31it/s]
8%|β | 292/3818 [02:01<25:28, 2.31it/s]
8%|β | 293/3818 [02:01<25:26, 2.31it/s]
8%|β | 294/3818 [02:02<25:26, 2.31it/s]
8%|β | 295/3818 [02:02<25:24, 2.31it/s]
8%|β | 296/3818 [02:02<25:28, 2.30it/s]
8%|β | 297/3818 [02:03<25:28, 2.30it/s]
8%|β | 298/3818 [02:03<25:26, 2.31it/s]
8%|β | 299/3818 [02:04<25:24, 2.31it/s]
8%|β | 300/3818 [02:04<25:28, 2.30it/s]
8%|β | 301/3818 [02:05<25:29, 2.30it/s]
8%|β | 302/3818 [02:05<25:29, 2.30it/s]
8%|β | 303/3818 [02:05<25:30, 2.30it/s]
8%|β | 304/3818 [02:06<25:33, 2.29it/s]
8%|β | 305/3818 [02:06<25:31, 2.29it/s]
8%|β | 306/3818 [02:07<25:32, 2.29it/s]
8%|β | 307/3818 [02:07<25:33, 2.29it/s]
8%|β | 308/3818 [02:08<25:30, 2.29it/s]
8%|β | 309/3818 [02:08<25:33, 2.29it/s]
8%|β | 310/3818 [02:09<25:33, 2.29it/s]
8%|β | 311/3818 [02:09<25:30, 2.29it/s]
8%|β | 312/3818 [02:09<25:32, 2.29it/s]
8%|β | 313/3818 [02:10<25:30, 2.29it/s]
8%|β | 314/3818 [02:10<25:30, 2.29it/s]
8%|β | 315/3818 [02:11<25:30, 2.29it/s]
8%|β | 316/3818 [02:11<25:27, 2.29it/s]
8%|β | 317/3818 [02:12<25:32, 2.28it/s]
8%|β | 318/3818 [02:12<25:31, 2.29it/s]
8%|β | 319/3818 [02:12<25:29, 2.29it/s]
8%|β | 320/3818 [02:13<25:30, 2.28it/s]
8%|β | 321/3818 [02:13<25:30, 2.28it/s]
8%|β | 322/3818 [02:14<25:23, 2.29it/s]
8%|β | 323/3818 [02:14<25:25, 2.29it/s]
8%|β | 324/3818 [02:15<25:29, 2.28it/s]
9%|β | 325/3818 [02:15<25:27, 2.29it/s]
9%|β | 326/3818 [02:16<25:38, 2.27it/s]
9%|β | 327/3818 [02:16<25:31, 2.28it/s]
9%|β | 328/3818 [02:16<25:32, 2.28it/s]
9%|β | 329/3818 [02:17<25:27, 2.28it/s]
9%|β | 330/3818 [02:17<25:31, 2.28it/s]
9%|β | 331/3818 [02:18<25:33, 2.27it/s]
9%|β | 332/3818 [02:18<25:30, 2.28it/s]
9%|β | 333/3818 [02:19<25:31, 2.28it/s]
9%|β | 334/3818 [02:19<25:28, 2.28it/s]
9%|β | 335/3818 [02:19<25:32, 2.27it/s]
9%|β | 336/3818 [02:20<25:31, 2.27it/s]
9%|β | 337/3818 [02:20<25:29, 2.28it/s]
9%|β | 338/3818 [02:21<25:28, 2.28it/s]
9%|β | 339/3818 [02:21<25:27, 2.28it/s]
9%|β | 340/3818 [02:22<25:29, 2.27it/s]
9%|β | 341/3818 [02:22<25:28, 2.28it/s]
9%|β | 342/3818 [02:23<25:30, 2.27it/s]
9%|β | 343/3818 [02:23<25:27, 2.28it/s]
9%|β | 344/3818 [02:23<25:31, 2.27it/s]
9%|β | 345/3818 [02:24<25:30, 2.27it/s]
9%|β | 346/3818 [02:24<25:29, 2.27it/s]
9%|β | 347/3818 [02:25<25:31, 2.27it/s]
9%|β | 348/3818 [02:25<25:29, 2.27it/s]
9%|β | 349/3818 [02:26<25:32, 2.26it/s]
9%|β | 350/3818 [02:26<25:31, 2.26it/s]
9%|β | 351/3818 [02:27<25:29, 2.27it/s]
9%|β | 352/3818 [02:27<25:30, 2.26it/s]
9%|β | 353/3818 [02:27<25:29, 2.27it/s]
9%|β | 354/3818 [02:28<25:29, 2.26it/s]
9%|β | 355/3818 [02:28<25:28, 2.27it/s]
9%|β | 356/3818 [02:29<25:26, 2.27it/s]
9%|β | 357/3818 [02:29<25:26, 2.27it/s]
9%|β | 358/3818 [02:30<25:24, 2.27it/s]
9%|β | 359/3818 [02:30<25:25, 2.27it/s]
9%|β | 360/3818 [02:30<25:25, 2.27it/s]
9%|β | 361/3818 [02:31<25:26, 2.26it/s]
9%|β | 362/3818 [02:31<25:23, 2.27it/s]
10%|β | 363/3818 [02:32<25:26, 2.26it/s]
10%|β | 364/3818 [02:32<25:29, 2.26it/s]
10%|β | 365/3818 [02:33<25:28, 2.26it/s]
10%|β | 366/3818 [02:33<25:27, 2.26it/s]
10%|β | 367/3818 [02:34<25:25, 2.26it/s]
10%|β | 368/3818 [02:34<25:25, 2.26it/s]
10%|β | 369/3818 [02:34<25:26, 2.26it/s]
10%|β | 370/3818 [02:35<25:24, 2.26it/s]
10%|β | 371/3818 [02:35<25:25, 2.26it/s]
10%|β | 372/3818 [02:36<25:23, 2.26it/s]
10%|β | 373/3818 [02:36<25:26, 2.26it/s]
10%|β | 374/3818 [02:37<25:25, 2.26it/s]
10%|β | 375/3818 [02:37<25:24, 2.26it/s]
10%|β | 376/3818 [02:38<25:26, 2.25it/s]
10%|β | 377/3818 [02:38<25:26, 2.25it/s]
10%|β | 378/3818 [02:38<25:25, 2.25it/s]
10%|β | 379/3818 [02:39<25:23, 2.26it/s]
10%|β | 380/3818 [02:39<25:26, 2.25it/s]
10%|β | 381/3818 [02:40<25:26, 2.25it/s]
10%|β | 382/3818 [02:40<25:23, 2.26it/s]
10%|β | 383/3818 [02:41<25:27, 2.25it/s]
10%|β | 384/3818 [02:41<25:29, 2.25it/s]
10%|β | 385/3818 [02:42<25:29, 2.24it/s]
10%|β | 386/3818 [02:42<25:25, 2.25it/s]
10%|β | 387/3818 [02:42<25:27, 2.25it/s]
10%|β | 388/3818 [02:43<25:26, 2.25it/s]
10%|β | 389/3818 [02:43<25:23, 2.25it/s]
10%|β | 390/3818 [02:44<25:21, 2.25it/s]
10%|β | 391/3818 [02:44<25:21, 2.25it/s]
10%|β | 392/3818 [02:45<25:21, 2.25it/s]
10%|β | 393/3818 [02:45<25:17, 2.26it/s]
10%|β | 394/3818 [02:46<25:24, 2.25it/s]
10%|β | 395/3818 [02:46<25:22, 2.25it/s]
10%|β | 396/3818 [02:46<25:22, 2.25it/s]
10%|β | 397/3818 [02:47<25:19, 2.25it/s]
10%|β | 398/3818 [02:47<25:20, 2.25it/s]
10%|β | 399/3818 [02:48<25:17, 2.25it/s]
10%|β | 400/3818 [02:48<25:20, 2.25it/s]
11%|β | 401/3818 [02:49<25:21, 2.25it/s]
11%|β | 402/3818 [02:49<25:18, 2.25it/s]
11%|β | 403/3818 [02:50<25:19, 2.25it/s]
11%|β | 404/3818 [02:50<25:14, 2.25it/s]
11%|β | 405/3818 [02:50<25:18, 2.25it/s]
11%|β | 406/3818 [02:51<25:17, 2.25it/s]
11%|β | 407/3818 [02:51<25:19, 2.24it/s]
11%|β | 408/3818 [02:52<25:19, 2.24it/s]
11%|β | 409/3818 [02:52<25:18, 2.24it/s]
11%|β | 410/3818 [02:53<25:17, 2.25it/s]
11%|β | 411/3818 [02:53<25:19, 2.24it/s]
11%|β | 412/3818 [02:54<25:21, 2.24it/s]
11%|β | 413/3818 [02:54<25:19, 2.24it/s]
11%|β | 414/3818 [02:54<25:21, 2.24it/s]
11%|β | 415/3818 [02:55<25:20, 2.24it/s]
11%|β | 416/3818 [02:55<25:19, 2.24it/s]
11%|β | 417/3818 [02:56<25:21, 2.24it/s]
11%|β | 418/3818 [02:56<25:20, 2.24it/s]
11%|β | 419/3818 [02:57<25:16, 2.24it/s]
11%|β | 420/3818 [02:57<25:16, 2.24it/s]
11%|β | 421/3818 [02:58<25:18, 2.24it/s]
11%|β | 422/3818 [02:58<25:18, 2.24it/s]
11%|β | 423/3818 [02:59<25:20, 2.23it/s]
11%|β | 424/3818 [02:59<25:22, 2.23it/s]
11%|β | 425/3818 [02:59<25:18, 2.23it/s]
11%|β | 426/3818 [03:00<25:17, 2.23it/s]
11%|β | 427/3818 [03:00<25:16, 2.24it/s]
11%|β | 428/3818 [03:01<25:05, 2.25it/s]
11%|β | 429/3818 [03:01<25:03, 2.25it/s]
11%|ββ | 430/3818 [03:02<24:59, 2.26it/s]
11%|ββ | 431/3818 [03:02<25:00, 2.26it/s]
11%|ββ | 432/3818 [03:02<24:56, 2.26it/s]
11%|ββ | 433/3818 [03:03<24:55, 2.26it/s]
11%|ββ | 434/3818 [03:03<24:52, 2.27it/s]
11%|ββ | 435/3818 [03:04<24:51, 2.27it/s]
11%|ββ | 436/3818 [03:04<24:49, 2.27it/s]
11%|ββ | 437/3818 [03:05<24:48, 2.27it/s]
11%|ββ | 438/3818 [03:05<24:48, 2.27it/s]
11%|ββ | 439/3818 [03:06<24:50, 2.27it/s]
12%|ββ | 440/3818 [03:06<24:47, 2.27it/s]
12%|ββ | 441/3818 [03:06<24:44, 2.28it/s]
12%|ββ | 442/3818 [03:07<24:42, 2.28it/s]
12%|ββ | 443/3818 [03:07<24:47, 2.27it/s]
12%|ββ | 444/3818 [03:08<24:47, 2.27it/s]
12%|ββ | 445/3818 [03:08<24:47, 2.27it/s]
12%|ββ | 446/3818 [03:09<24:45, 2.27it/s]
12%|ββ | 447/3818 [03:09<24:47, 2.27it/s]
12%|ββ | 448/3818 [03:10<24:47, 2.27it/s]
12%|ββ | 449/3818 [03:10<24:45, 2.27it/s]
12%|ββ | 450/3818 [03:10<24:45, 2.27it/s]
12%|ββ | 451/3818 [03:11<24:46, 2.27it/s]
12%|ββ | 452/3818 [03:11<24:46, 2.26it/s]
12%|ββ | 453/3818 [03:12<24:48, 2.26it/s]
12%|ββ | 454/3818 [03:12<24:48, 2.26it/s]
12%|ββ | 455/3818 [03:13<24:45, 2.26it/s]
12%|ββ | 456/3818 [03:13<24:45, 2.26it/s]
12%|ββ | 457/3818 [03:14<24:49, 2.26it/s]
12%|ββ | 458/3818 [03:14<24:46, 2.26it/s]
12%|ββ | 459/3818 [03:14<24:45, 2.26it/s]
12%|ββ | 460/3818 [03:15<24:43, 2.26it/s]
12%|ββ | 461/3818 [03:15<24:44, 2.26it/s]
12%|ββ | 462/3818 [03:16<24:44, 2.26it/s]
12%|ββ | 463/3818 [03:16<24:45, 2.26it/s]
12%|ββ | 464/3818 [03:17<24:44, 2.26it/s]
12%|ββ | 465/3818 [03:17<24:42, 2.26it/s]
12%|ββ | 466/3818 [03:18<24:43, 2.26it/s]
12%|ββ | 467/3818 [03:18<24:45, 2.26it/s]
12%|ββ | 468/3818 [03:18<24:44, 2.26it/s]
12%|ββ | 469/3818 [03:19<24:45, 2.25it/s]
12%|ββ | 470/3818 [03:19<24:41, 2.26it/s]
12%|ββ | 471/3818 [03:20<24:42, 2.26it/s]
12%|ββ | 472/3818 [03:20<24:42, 2.26it/s]
12%|ββ | 473/3818 [03:21<24:43, 2.26it/s]
12%|ββ | 474/3818 [03:21<24:44, 2.25it/s]
12%|ββ | 475/3818 [03:21<24:41, 2.26it/s]
12%|ββ | 476/3818 [03:22<24:42, 2.25it/s]
12%|ββ | 477/3818 [03:22<24:46, 2.25it/s]
13%|ββ | 478/3818 [03:23<24:45, 2.25it/s]
13%|ββ | 479/3818 [03:23<24:44, 2.25it/s]
13%|ββ | 480/3818 [03:24<24:42, 2.25it/s]
13%|ββ | 481/3818 [03:24<24:41, 2.25it/s]
13%|ββ | 482/3818 [03:25<24:40, 2.25it/s]
13%|ββ | 483/3818 [03:25<24:40, 2.25it/s]
13%|ββ | 484/3818 [03:25<24:40, 2.25it/s]
13%|ββ | 485/3818 [03:26<24:38, 2.25it/s]
13%|ββ | 486/3818 [03:26<24:37, 2.26it/s]
13%|ββ | 487/3818 [03:27<24:38, 2.25it/s]
13%|ββ | 488/3818 [03:27<24:36, 2.26it/s]
13%|ββ | 489/3818 [03:28<24:38, 2.25it/s]
13%|ββ | 490/3818 [03:28<24:37, 2.25it/s]
13%|ββ | 491/3818 [03:29<24:39, 2.25it/s]
13%|ββ | 492/3818 [03:29<24:36, 2.25it/s]
13%|ββ | 493/3818 [03:29<24:39, 2.25it/s]
13%|ββ | 494/3818 [03:30<24:35, 2.25it/s]
13%|ββ | 495/3818 [03:30<24:35, 2.25it/s]
13%|ββ | 496/3818 [03:31<24:35, 2.25it/s]
13%|ββ | 497/3818 [03:31<24:34, 2.25it/s]
13%|ββ | 498/3818 [03:32<24:37, 2.25it/s]
13%|ββ | 499/3818 [03:32<24:34, 2.25it/s]
13%|ββ | 500/3818 [03:33<24:38, 2.24it/s]
13%|ββ | 501/3818 [03:33<24:38, 2.24it/s]
13%|ββ | 502/3818 [03:33<24:38, 2.24it/s]
13%|ββ | 503/3818 [03:34<24:39, 2.24it/s]
13%|ββ | 504/3818 [03:34<24:36, 2.24it/s]
13%|ββ | 505/3818 [03:35<24:36, 2.24it/s]
13%|ββ | 506/3818 [03:35<24:36, 2.24it/s]
13%|ββ | 507/3818 [03:36<24:35, 2.24it/s]
13%|ββ | 508/3818 [03:36<24:33, 2.25it/s]
13%|ββ | 509/3818 [03:37<24:34, 2.24it/s]
13%|ββ | 510/3818 [03:37<24:32, 2.25it/s]
13%|ββ | 511/3818 [03:38<24:32, 2.25it/s]
13%|ββ | 512/3818 [03:38<24:33, 2.24it/s]
13%|ββ | 513/3818 [03:38<24:31, 2.25it/s]
13%|ββ | 514/3818 [03:39<24:29, 2.25it/s]
13%|ββ | 515/3818 [03:39<24:28, 2.25it/s]
14%|ββ | 516/3818 [03:40<24:31, 2.24it/s]
14%|ββ | 517/3818 [03:40<24:30, 2.25it/s]
14%|ββ | 518/3818 [03:41<24:28, 2.25it/s]
14%|ββ | 519/3818 [03:41<24:23, 2.25it/s]
14%|ββ | 520/3818 [03:42<24:27, 2.25it/s]
14%|ββ | 521/3818 [03:42<24:28, 2.25it/s]
14%|ββ | 522/3818 [03:42<24:28, 2.24it/s]
14%|ββ | 523/3818 [03:43<24:29, 2.24it/s]
14%|ββ | 524/3818 [03:43<24:28, 2.24it/s]
14%|ββ | 525/3818 [03:44<24:26, 2.25it/s]
14%|ββ | 526/3818 [03:44<24:27, 2.24it/s]
14%|ββ | 527/3818 [03:45<24:26, 2.24it/s]
14%|ββ | 528/3818 [03:45<24:26, 2.24it/s]
14%|ββ | 529/3818 [03:46<24:28, 2.24it/s]
14%|ββ | 530/3818 [03:46<24:27, 2.24it/s]
14%|ββ | 531/3818 [03:46<24:27, 2.24it/s]
14%|ββ | 532/3818 [03:47<24:23, 2.25it/s]
14%|ββ | 533/3818 [03:47<24:25, 2.24it/s]
14%|ββ | 534/3818 [03:48<24:26, 2.24it/s]
14%|ββ | 535/3818 [03:48<24:23, 2.24it/s]
14%|ββ | 536/3818 [03:49<24:26, 2.24it/s]
14%|ββ | 537/3818 [03:49<24:24, 2.24it/s]
14%|ββ | 538/3818 [03:50<24:23, 2.24it/s]
14%|ββ | 539/3818 [03:50<24:23, 2.24it/s]
14%|ββ | 540/3818 [03:50<24:26, 2.24it/s]
14%|ββ | 541/3818 [03:51<24:22, 2.24it/s]
14%|ββ | 542/3818 [03:51<24:21, 2.24it/s]
14%|ββ | 543/3818 [03:52<24:21, 2.24it/s]
14%|ββ | 544/3818 [03:52<24:21, 2.24it/s]
14%|ββ | 545/3818 [03:53<24:22, 2.24it/s]
14%|ββ | 546/3818 [03:53<24:21, 2.24it/s]
14%|ββ | 547/3818 [03:54<24:22, 2.24it/s]
14%|ββ | 548/3818 [03:54<24:21, 2.24it/s]
14%|ββ | 549/3818 [03:54<24:21, 2.24it/s]
14%|ββ | 550/3818 [03:55<24:19, 2.24it/s]
14%|ββ | 551/3818 [03:55<24:22, 2.23it/s]
14%|ββ | 552/3818 [03:56<24:22, 2.23it/s]
14%|ββ | 553/3818 [03:56<24:21, 2.23it/s]
15%|ββ | 554/3818 [03:57<24:23, 2.23it/s]
15%|ββ | 555/3818 [03:57<24:23, 2.23it/s]
15%|ββ | 556/3818 [03:58<24:20, 2.23it/s]
15%|ββ | 557/3818 [03:58<24:23, 2.23it/s]
15%|ββ | 558/3818 [03:58<24:23, 2.23it/s]
15%|ββ | 559/3818 [03:59<24:23, 2.23it/s]
15%|ββ | 560/3818 [03:59<24:20, 2.23it/s]
15%|ββ | 561/3818 [04:00<24:20, 2.23it/s]
15%|ββ | 562/3818 [04:00<24:23, 2.22it/s]
15%|ββ | 563/3818 [04:01<24:20, 2.23it/s]
15%|ββ | 564/3818 [04:01<24:24, 2.22it/s]
15%|ββ | 565/3818 [04:02<24:18, 2.23it/s]
15%|ββ | 566/3818 [04:02<24:21, 2.23it/s]
15%|ββ | 567/3818 [04:03<24:21, 2.22it/s]
15%|ββ | 568/3818 [04:03<24:22, 2.22it/s]
15%|ββ | 569/3818 [04:03<24:22, 2.22it/s]
15%|ββ | 570/3818 [04:04<24:20, 2.22it/s]
15%|ββ | 571/3818 [04:04<24:22, 2.22it/s]
15%|ββ | 572/3818 [04:05<24:18, 2.23it/s]
15%|ββ | 573/3818 [04:05<24:17, 2.23it/s]
15%|ββ | 574/3818 [04:06<24:16, 2.23it/s]
15%|ββ | 575/3818 [04:06<24:14, 2.23it/s]
15%|ββ | 576/3818 [04:07<24:18, 2.22it/s]
15%|ββ | 577/3818 [04:07<24:16, 2.23it/s]
15%|ββ | 578/3818 [04:07<24:17, 2.22it/s]
15%|ββ | 579/3818 [04:08<24:16, 2.22it/s]
15%|ββ | 580/3818 [04:08<24:14, 2.23it/s]
15%|ββ | 581/3818 [04:09<24:10, 2.23it/s]
15%|ββ | 582/3818 [04:09<24:10, 2.23it/s]
15%|ββ | 583/3818 [04:10<24:09, 2.23it/s]
15%|ββ | 584/3818 [04:10<24:10, 2.23it/s]
15%|ββ | 585/3818 [04:11<24:14, 2.22it/s]
15%|ββ | 586/3818 [04:11<24:13, 2.22it/s]
15%|ββ | 587/3818 [04:12<24:10, 2.23it/s]
15%|ββ | 588/3818 [04:12<24:10, 2.23it/s]
15%|ββ | 589/3818 [04:12<24:12, 2.22it/s]
15%|ββ | 590/3818 [04:13<24:11, 2.22it/s]
15%|ββ | 591/3818 [04:13<24:12, 2.22it/s]
16%|ββ | 592/3818 [04:14<24:08, 2.23it/s]
16%|ββ | 593/3818 [04:14<24:08, 2.23it/s]
16%|ββ | 594/3818 [04:15<24:09, 2.22it/s]
16%|ββ | 595/3818 [04:15<24:12, 2.22it/s]
16%|ββ | 596/3818 [04:16<24:07, 2.23it/s]
16%|ββ | 597/3818 [04:16<24:04, 2.23it/s]
16%|ββ | 598/3818 [04:16<24:06, 2.23it/s]
16%|ββ | 599/3818 [04:17<24:06, 2.23it/s]
16%|ββ | 600/3818 [04:17<24:05, 2.23it/s]
16%|ββ | 601/3818 [04:18<24:04, 2.23it/s]
16%|ββ | 602/3818 [04:18<24:04, 2.23it/s]
16%|ββ | 603/3818 [04:19<24:05, 2.22it/s]
16%|ββ | 604/3818 [04:19<24:11, 2.21it/s]
16%|ββ | 605/3818 [04:20<24:09, 2.22it/s]
16%|ββ | 606/3818 [04:20<24:10, 2.21it/s]
16%|ββ | 607/3818 [04:21<24:08, 2.22it/s]
16%|ββ | 608/3818 [04:21<24:08, 2.22it/s]
16%|ββ | 609/3818 [04:21<24:05, 2.22it/s]
16%|ββ | 610/3818 [04:22<24:02, 2.22it/s]
16%|ββ | 611/3818 [04:22<24:01, 2.22it/s]
16%|ββ | 612/3818 [04:23<24:04, 2.22it/s]
16%|ββ | 613/3818 [04:23<24:04, 2.22it/s]
16%|ββ | 614/3818 [04:24<24:04, 2.22it/s]
16%|ββ | 615/3818 [04:24<24:05, 2.22it/s]
16%|ββ | 616/3818 [04:25<24:00, 2.22it/s]
16%|ββ | 617/3818 [04:25<24:04, 2.22it/s]
16%|ββ | 618/3818 [04:25<24:06, 2.21it/s]
16%|ββ | 619/3818 [04:26<24:07, 2.21it/s]
16%|ββ | 620/3818 [04:26<24:05, 2.21it/s]
16%|ββ | 621/3818 [04:27<24:04, 2.21it/s]
16%|ββ | 622/3818 [04:27<24:02, 2.22it/s]
16%|ββ | 623/3818 [04:28<24:00, 2.22it/s]
16%|ββ | 624/3818 [04:28<24:03, 2.21it/s]
16%|ββ | 625/3818 [04:29<24:03, 2.21it/s]
16%|ββ | 626/3818 [04:29<24:05, 2.21it/s]
16%|ββ | 627/3818 [04:30<24:03, 2.21it/s]
16%|ββ | 628/3818 [04:30<24:03, 2.21it/s]
16%|ββ | 629/3818 [04:30<24:02, 2.21it/s]
17%|ββ | 630/3818 [04:31<23:59, 2.21it/s]
17%|ββ | 631/3818 [04:31<24:01, 2.21it/s]
17%|ββ | 632/3818 [04:32<24:00, 2.21it/s]
17%|ββ | 633/3818 [04:32<24:01, 2.21it/s]
17%|ββ | 634/3818 [04:33<23:58, 2.21it/s]
17%|ββ | 635/3818 [04:33<23:57, 2.21it/s]
17%|ββ | 636/3818 [04:34<23:59, 2.21it/s]
17%|ββ | 637/3818 [04:34<23:56, 2.21it/s]
17%|ββ | 638/3818 [04:35<23:52, 2.22it/s]
17%|ββ | 639/3818 [04:35<23:56, 2.21it/s]
17%|ββ | 640/3818 [04:35<23:54, 2.22it/s]
17%|ββ | 641/3818 [04:36<23:54, 2.21it/s]
17%|ββ | 642/3818 [04:36<23:55, 2.21it/s]
17%|ββ | 643/3818 [04:37<23:55, 2.21it/s]
17%|ββ | 644/3818 [04:37<23:56, 2.21it/s]
17%|ββ | 645/3818 [04:38<23:50, 2.22it/s]
17%|ββ | 646/3818 [04:38<23:47, 2.22it/s]
17%|ββ | 647/3818 [04:39<23:51, 2.22it/s]
17%|ββ | 648/3818 [04:39<23:52, 2.21it/s]
17%|ββ | 649/3818 [04:39<23:51, 2.21it/s]
17%|ββ | 650/3818 [04:40<23:53, 2.21it/s]
17%|ββ | 651/3818 [04:40<23:53, 2.21it/s]
17%|ββ | 652/3818 [04:41<23:50, 2.21it/s]
17%|ββ | 653/3818 [04:41<23:52, 2.21it/s]
17%|ββ | 654/3818 [04:42<23:49, 2.21it/s]
17%|ββ | 655/3818 [04:42<23:51, 2.21it/s]
17%|ββ | 656/3818 [04:43<23:49, 2.21it/s]
17%|ββ | 657/3818 [04:43<23:46, 2.22it/s]
17%|ββ | 658/3818 [04:44<23:47, 2.21it/s]
17%|ββ | 659/3818 [04:44<23:39, 2.22it/s]
17%|ββ | 660/3818 [04:44<23:44, 2.22it/s]
17%|ββ | 661/3818 [04:45<23:48, 2.21it/s]
17%|ββ | 662/3818 [04:45<23:48, 2.21it/s]
17%|ββ | 663/3818 [04:46<23:48, 2.21it/s]
17%|ββ | 664/3818 [04:46<23:46, 2.21it/s]
17%|ββ | 665/3818 [04:47<23:38, 2.22it/s]
17%|ββ | 666/3818 [04:47<23:38, 2.22it/s]
17%|ββ | 667/3818 [04:48<23:43, 2.21it/s]
17%|ββ | 668/3818 [04:48<23:43, 2.21it/s]
18%|ββ | 669/3818 [04:49<23:49, 2.20it/s]
18%|ββ | 670/3818 [04:49<23:43, 2.21it/s]
18%|ββ | 671/3818 [04:49<23:43, 2.21it/s]
18%|ββ | 672/3818 [04:50<23:45, 2.21it/s]
18%|ββ | 673/3818 [04:50<23:44, 2.21it/s]
18%|ββ | 674/3818 [04:51<23:47, 2.20it/s]
18%|ββ | 675/3818 [04:51<23:44, 2.21it/s]
18%|ββ | 676/3818 [04:52<23:45, 2.20it/s]
18%|ββ | 677/3818 [04:52<23:38, 2.21it/s]
18%|ββ | 678/3818 [04:53<23:39, 2.21it/s]
18%|ββ | 679/3818 [04:53<23:39, 2.21it/s]
18%|ββ | 680/3818 [04:54<23:37, 2.21it/s]
18%|ββ | 681/3818 [04:54<23:38, 2.21it/s]
18%|ββ | 682/3818 [04:54<23:35, 2.22it/s]
18%|ββ | 683/3818 [04:55<23:38, 2.21it/s]
18%|ββ | 684/3818 [04:55<23:39, 2.21it/s]
18%|ββ | 685/3818 [04:56<23:37, 2.21it/s]
18%|ββ | 686/3818 [04:56<23:37, 2.21it/s]
18%|ββ | 687/3818 [04:57<23:36, 2.21it/s]
18%|ββ | 688/3818 [04:57<23:39, 2.21it/s]
18%|ββ | 689/3818 [04:58<23:35, 2.21it/s]
18%|ββ | 690/3818 [04:58<23:37, 2.21it/s]
18%|ββ | 691/3818 [04:58<23:34, 2.21it/s]
18%|ββ | 692/3818 [04:59<23:32, 2.21it/s]
18%|ββ | 693/3818 [04:59<23:32, 2.21it/s]
18%|ββ | 694/3818 [05:00<23:33, 2.21it/s]
18%|ββ | 695/3818 [05:00<23:37, 2.20it/s]
18%|ββ | 696/3818 [05:01<23:35, 2.21it/s]
18%|ββ | 697/3818 [05:01<23:35, 2.21it/s]
18%|ββ | 698/3818 [05:02<23:34, 2.21it/s]
18%|ββ | 699/3818 [05:02<23:36, 2.20it/s]
18%|ββ | 700/3818 [05:03<23:59, 2.17it/s]
18%|ββ | 701/3818 [05:03<23:50, 2.18it/s]
18%|ββ | 702/3818 [05:03<23:47, 2.18it/s]
18%|ββ | 703/3818 [05:04<23:35, 2.20it/s]
18%|ββ | 704/3818 [05:04<23:40, 2.19it/s]
18%|ββ | 705/3818 [05:05<23:32, 2.20it/s]
18%|ββ | 706/3818 [05:05<23:35, 2.20it/s]
19%|ββ | 707/3818 [05:06<23:32, 2.20it/s]
19%|ββ | 708/3818 [05:06<23:33, 2.20it/s]
19%|ββ | 709/3818 [05:07<23:28, 2.21it/s]
19%|ββ | 710/3818 [05:07<23:29, 2.20it/s]
19%|ββ | 711/3818 [05:08<23:30, 2.20it/s]
19%|ββ | 712/3818 [05:08<23:32, 2.20it/s]
19%|ββ | 713/3818 [05:08<23:35, 2.19it/s]
19%|ββ | 714/3818 [05:09<23:47, 2.17it/s]
19%|ββ | 715/3818 [05:09<23:47, 2.17it/s]
19%|ββ | 716/3818 [05:10<23:34, 2.19it/s]
19%|ββ | 717/3818 [05:10<23:29, 2.20it/s]
19%|ββ | 718/3818 [05:11<23:31, 2.20it/s]
19%|ββ | 719/3818 [05:11<23:27, 2.20it/s]
19%|ββ | 720/3818 [05:12<23:28, 2.20it/s]
19%|ββ | 721/3818 [05:12<23:20, 2.21it/s]
19%|ββ | 722/3818 [05:13<23:34, 2.19it/s]
19%|ββ | 723/3818 [05:13<23:29, 2.20it/s]
19%|ββ | 724/3818 [05:14<23:27, 2.20it/s]
19%|ββ | 725/3818 [05:14<23:21, 2.21it/s]
19%|ββ | 726/3818 [05:14<23:25, 2.20it/s]
19%|ββ | 727/3818 [05:15<23:21, 2.21it/s]
19%|ββ | 728/3818 [05:15<23:25, 2.20it/s]
19%|ββ | 729/3818 [05:16<23:28, 2.19it/s]
19%|ββ | 730/3818 [05:16<23:26, 2.20it/s]
19%|ββ | 731/3818 [05:17<23:28, 2.19it/s]
19%|ββ | 732/3818 [05:17<23:24, 2.20it/s]
19%|ββ | 733/3818 [05:18<23:19, 2.20it/s]
19%|ββ | 734/3818 [05:18<23:17, 2.21it/s]
19%|ββ | 735/3818 [05:19<23:19, 2.20it/s]
19%|ββ | 736/3818 [05:19<23:20, 2.20it/s]
19%|ββ | 737/3818 [05:19<23:21, 2.20it/s]
19%|ββ | 738/3818 [05:20<23:16, 2.21it/s]
19%|ββ | 739/3818 [05:20<23:16, 2.21it/s]
19%|ββ | 740/3818 [05:21<23:17, 2.20it/s]
19%|ββ | 741/3818 [05:21<23:18, 2.20it/s]
19%|ββ | 742/3818 [05:22<23:17, 2.20it/s]
19%|ββ | 743/3818 [05:22<23:18, 2.20it/s]
19%|ββ | 744/3818 [05:23<24:32, 2.09it/s]
20%|ββ | 745/3818 [05:23<24:14, 2.11it/s]
20%|ββ | 746/3818 [05:24<24:00, 2.13it/s]
20%|ββ | 747/3818 [05:24<23:45, 2.15it/s]
20%|ββ | 748/3818 [05:24<23:36, 2.17it/s]
20%|ββ | 749/3818 [05:25<23:24, 2.18it/s]
20%|ββ | 750/3818 [05:25<23:29, 2.18it/s]
20%|ββ | 751/3818 [05:26<23:22, 2.19it/s]
20%|ββ | 752/3818 [05:26<23:24, 2.18it/s]
20%|ββ | 753/3818 [05:27<23:18, 2.19it/s]
20%|ββ | 754/3818 [05:27<23:16, 2.19it/s]
20%|ββ | 755/3818 [05:28<23:15, 2.20it/s]
20%|ββ | 756/3818 [05:28<23:13, 2.20it/s]
20%|ββ | 757/3818 [05:29<23:16, 2.19it/s]
20%|ββ | 758/3818 [05:29<23:10, 2.20it/s]
20%|ββ | 759/3818 [05:30<23:15, 2.19it/s]
20%|ββ | 760/3818 [05:30<23:11, 2.20it/s]
20%|ββ | 761/3818 [05:30<23:11, 2.20it/s]
20%|ββ | 762/3818 [05:31<23:09, 2.20it/s]
20%|ββ | 763/3818 [05:31<23:13, 2.19it/s]
20%|ββ | 764/3818 [05:32<23:15, 2.19it/s]
20%|ββ | 765/3818 [05:32<23:08, 2.20it/s]
20%|ββ | 766/3818 [05:33<23:21, 2.18it/s]
20%|ββ | 767/3818 [05:33<23:16, 2.18it/s]
20%|ββ | 768/3818 [05:34<23:12, 2.19it/s]
20%|ββ | 769/3818 [05:34<23:11, 2.19it/s]
20%|ββ | 770/3818 [05:35<23:09, 2.19it/s]
20%|ββ | 771/3818 [05:35<23:09, 2.19it/s]
20%|ββ | 772/3818 [05:35<23:09, 2.19it/s]
20%|ββ | 773/3818 [05:36<23:03, 2.20it/s]
20%|ββ | 774/3818 [05:36<23:04, 2.20it/s]
20%|ββ | 775/3818 [05:37<23:07, 2.19it/s]
20%|ββ | 776/3818 [05:37<23:05, 2.20it/s]
20%|ββ | 777/3818 [05:38<23:04, 2.20it/s]
20%|ββ | 778/3818 [05:38<23:07, 2.19it/s]
20%|ββ | 779/3818 [05:39<23:06, 2.19it/s]
20%|ββ | 780/3818 [05:39<23:05, 2.19it/s]
20%|ββ | 781/3818 [05:40<23:02, 2.20it/s]
20%|ββ | 782/3818 [05:40<23:05, 2.19it/s]
21%|ββ | 783/3818 [05:40<23:00, 2.20it/s]
21%|ββ | 784/3818 [05:41<23:00, 2.20it/s]
21%|ββ | 785/3818 [05:41<22:57, 2.20it/s]
21%|ββ | 786/3818 [05:42<22:56, 2.20it/s]
21%|ββ | 787/3818 [05:42<23:00, 2.20it/s]
21%|ββ | 788/3818 [05:43<22:59, 2.20it/s]
21%|ββ | 789/3818 [05:43<23:01, 2.19it/s]
21%|ββ | 790/3818 [05:44<22:59, 2.19it/s]
21%|ββ | 791/3818 [05:44<23:02, 2.19it/s]
21%|ββ | 792/3818 [05:45<22:58, 2.20it/s]
21%|ββ | 793/3818 [05:45<22:56, 2.20it/s]
21%|ββ | 794/3818 [05:45<22:55, 2.20it/s]
21%|ββ | 795/3818 [05:46<22:56, 2.20it/s]
21%|ββ | 796/3818 [05:46<22:57, 2.19it/s]
21%|ββ | 797/3818 [05:47<22:54, 2.20it/s]
21%|ββ | 798/3818 [05:47<22:54, 2.20it/s]
21%|ββ | 799/3818 [05:48<23:10, 2.17it/s]
21%|ββ | 800/3818 [05:48<23:09, 2.17it/s]
21%|ββ | 801/3818 [05:49<23:01, 2.18it/s]
21%|ββ | 802/3818 [05:49<22:57, 2.19it/s]
21%|ββ | 803/3818 [05:50<22:58, 2.19it/s]
21%|ββ | 804/3818 [05:50<22:55, 2.19it/s]
21%|ββ | 805/3818 [05:50<22:56, 2.19it/s]
21%|ββ | 806/3818 [05:51<22:55, 2.19it/s]
21%|ββ | 807/3818 [05:51<22:56, 2.19it/s]
21%|ββ | 808/3818 [05:52<22:53, 2.19it/s]
21%|ββ | 809/3818 [05:52<22:53, 2.19it/s]
21%|ββ | 810/3818 [05:53<22:51, 2.19it/s]
21%|ββ | 811/3818 [05:53<22:52, 2.19it/s]
21%|βββ | 812/3818 [05:54<22:50, 2.19it/s]
21%|βββ | 813/3818 [05:54<22:53, 2.19it/s]
21%|βββ | 814/3818 [05:55<22:51, 2.19it/s]
21%|βββ | 815/3818 [05:55<22:47, 2.20it/s]
21%|βββ | 816/3818 [05:56<22:50, 2.19it/s]
21%|βββ | 817/3818 [05:56<22:47, 2.19it/s]
21%|βββ | 818/3818 [05:56<22:47, 2.19it/s]
21%|βββ | 819/3818 [05:57<22:39, 2.21it/s]
21%|βββ | 820/3818 [05:57<22:44, 2.20it/s]
22%|βββ | 821/3818 [05:58<22:42, 2.20it/s]
22%|βββ | 822/3818 [05:58<22:41, 2.20it/s]
22%|βββ | 823/3818 [05:59<22:42, 2.20it/s]
22%|βββ | 824/3818 [05:59<22:46, 2.19it/s]
22%|βββ | 825/3818 [06:00<22:43, 2.19it/s]
22%|βββ | 826/3818 [06:00<22:46, 2.19it/s]
22%|βββ | 827/3818 [06:01<22:45, 2.19it/s]
22%|βββ | 828/3818 [06:01<22:42, 2.19it/s]
22%|βββ | 829/3818 [06:01<22:40, 2.20it/s]
22%|βββ | 830/3818 [06:02<22:34, 2.21it/s]
22%|βββ | 831/3818 [06:02<22:40, 2.20it/s]
22%|βββ | 832/3818 [06:03<22:44, 2.19it/s]
22%|βββ | 833/3818 [06:03<22:40, 2.19it/s]
22%|βββ | 834/3818 [06:04<22:41, 2.19it/s]
22%|βββ | 835/3818 [06:04<22:36, 2.20it/s]
22%|βββ | 836/3818 [06:05<22:37, 2.20it/s]
22%|βββ | 837/3818 [06:05<22:34, 2.20it/s]
22%|βββ | 838/3818 [06:06<22:38, 2.19it/s]
22%|βββ | 839/3818 [06:06<22:35, 2.20it/s]
22%|βββ | 840/3818 [06:06<22:34, 2.20it/s]
22%|βββ | 841/3818 [06:07<22:32, 2.20it/s]
22%|βββ | 842/3818 [06:07<22:33, 2.20it/s]
22%|βββ | 843/3818 [06:08<22:41, 2.19it/s]
22%|βββ | 844/3818 [06:08<22:35, 2.19it/s]
22%|βββ | 845/3818 [06:09<22:34, 2.20it/s]
22%|βββ | 846/3818 [06:09<22:29, 2.20it/s]
22%|βββ | 847/3818 [06:10<22:29, 2.20it/s]
22%|βββ | 848/3818 [06:10<22:29, 2.20it/s]
22%|βββ | 849/3818 [06:11<22:31, 2.20it/s]
22%|βββ | 850/3818 [06:11<22:26, 2.20it/s]
22%|βββ | 851/3818 [06:11<22:23, 2.21it/s]
22%|βββ | 852/3818 [06:12<22:22, 2.21it/s]
22%|βββ | 853/3818 [06:12<22:20, 2.21it/s]
22%|βββ | 854/3818 [06:13<22:33, 2.19it/s]
22%|βββ | 855/3818 [06:13<22:32, 2.19it/s]
22%|βββ | 856/3818 [06:14<22:29, 2.19it/s]
22%|βββ | 857/3818 [06:14<22:23, 2.20it/s]
22%|βββ | 858/3818 [06:15<22:29, 2.19it/s]
22%|βββ | 859/3818 [06:15<22:21, 2.20it/s]
23%|βββ | 860/3818 [06:16<22:23, 2.20it/s]
23%|βββ | 861/3818 [06:16<22:19, 2.21it/s]
23%|βββ | 862/3818 [06:16<22:20, 2.21it/s]
23%|βββ | 863/3818 [06:17<22:20, 2.21it/s]
23%|βββ | 864/3818 [06:17<22:21, 2.20it/s]
23%|βββ | 865/3818 [06:18<22:29, 2.19it/s]
23%|βββ | 866/3818 [06:18<22:29, 2.19it/s]
23%|βββ | 867/3818 [06:19<22:25, 2.19it/s]
23%|βββ | 868/3818 [06:19<22:23, 2.20it/s]
23%|βββ | 869/3818 [06:20<22:21, 2.20it/s]
23%|βββ | 870/3818 [06:20<22:20, 2.20it/s]
23%|βββ | 871/3818 [06:21<22:18, 2.20it/s]
23%|βββ | 872/3818 [06:21<22:13, 2.21it/s]
23%|βββ | 873/3818 [06:21<22:13, 2.21it/s]
23%|βββ | 874/3818 [06:22<22:09, 2.21it/s]
23%|βββ | 875/3818 [06:22<22:18, 2.20it/s]
23%|βββ | 876/3818 [06:23<22:15, 2.20it/s]
23%|βββ | 877/3818 [06:23<22:12, 2.21it/s]
23%|βββ | 878/3818 [06:24<22:14, 2.20it/s]
23%|βββ | 879/3818 [06:24<22:14, 2.20it/s]
23%|βββ | 880/3818 [06:25<22:14, 2.20it/s]
23%|βββ | 881/3818 [06:25<22:13, 2.20it/s] |