File size: 103,550 Bytes
132573d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
06/19/2024 22:00:21 - WARNING - __main__ - Process rank: -1, device: cuda:0, n_gpu: 1distributed training: False, 16-bits training: False
06/19/2024 22:00:21 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_pin_memory=True,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
do_eval=False,
do_predict=True,
do_train=False,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
gradient_accumulation_steps=1,
gradient_checkpointing=False,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=5e-05,
length_column_name=length,
load_best_model_at_end=False,
local_rank=-1,
log_level=passive,
log_level_replica=passive,
log_on_each_node=True,
logging_dir=/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41/runs/Jun19_22-00-21_ppi-nlp6,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=steps,
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
no_cuda=False,
num_train_epochs=3.0,
optim=adamw_hf,
optim_args=None,
output_dir=/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41,
overwrite_output_dir=False,
past_index=-1,
per_device_eval_batch_size=4,
per_device_train_batch_size=8,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=[],
resume_from_checkpoint=None,
run_name=/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41,
save_on_each_node=False,
save_steps=500,
save_strategy=steps,
save_total_limit=None,
seed=42,
sharded_ddp=[],
skip_memory_metrics=True,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
xpu_backend=None,
)
/home/ext_maiara_frodrigues2000_gmail_/.pyenv/versions/spokennlp/lib/python3.8/site-packages/datasets/load.py:2555: FutureWarning: 'ignore_verifications' was deprecated in favor of 'verification_mode' in version 2.9.1 and will be removed in 3.0.0.
You can remove this warning by passing 'verification_mode=no_checks' instead.
  warnings.warn(
/home/ext_maiara_frodrigues2000_gmail_/.pyenv/versions/spokennlp/lib/python3.8/site-packages/datasets/load.py:929: FutureWarning: The repository for wiki_section_city contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at ./src/datasets/wiki_section_city/wiki_section_city.py
You can avoid this message in future by passing the argument `trust_remote_code=True`.
Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.
  warnings.warn(
No config specified, defaulting to the single config: wiki_section_city/WikiSectionCityForDocumentSegmentation
06/19/2024 22:00:21 - INFO - datasets.builder - No config specified, defaulting to the single config: wiki_section_city/WikiSectionCityForDocumentSegmentation
Using custom data configuration WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad
06/19/2024 22:00:21 - INFO - datasets.builder - Using custom data configuration WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad
Loading Dataset Infos from /home/ext_luti4497_gmail_com/.cache/huggingface/modules/datasets_modules/datasets/wiki_section_city/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4
06/19/2024 22:00:21 - INFO - datasets.info - Loading Dataset Infos from /home/ext_luti4497_gmail_com/.cache/huggingface/modules/datasets_modules/datasets/wiki_section_city/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4
Generating dataset wiki_section_city (/projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4)
06/19/2024 22:00:21 - INFO - datasets.builder - Generating dataset wiki_section_city (/projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4)
Downloading and preparing dataset wiki_section_city/WikiSectionCityForDocumentSegmentation to /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4...
06/19/2024 22:00:21 - INFO - datasets.builder - Downloading and preparing dataset wiki_section_city/WikiSectionCityForDocumentSegmentation to /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4...
Downloading took 0.0 min
06/19/2024 22:00:21 - INFO - datasets.download.download_manager - Downloading took 0.0 min
Checksum Computation took 0.0 min
06/19/2024 22:00:21 - INFO - datasets.download.download_manager - Checksum Computation took 0.0 min
Generating train split
06/19/2024 22:00:21 - INFO - datasets.builder - Generating train split

Generating train split: 0 examples [00:00, ? examples/s]
Generating train split: 1 examples [00:00,  1.88 examples/s]
Generating train split: 174 examples [00:00, 366.96 examples/s]
Generating train split: 332 examples [00:00, 647.83 examples/s]
Generating train split: 497 examples [00:00, 889.10 examples/s]
Generating train split: 684 examples [00:00, 1141.68 examples/s]
Generating train split: 873 examples [00:01, 1341.00 examples/s]
Generating train split: 1086 examples [00:01, 1212.55 examples/s]
Generating train split: 1257 examples [00:01, 1324.98 examples/s]
Generating train split: 1459 examples [00:01, 1496.72 examples/s]
Generating train split: 1642 examples [00:01, 1581.27 examples/s]
Generating train split: 1815 examples [00:01, 1615.68 examples/s]
Generating train split: 2000 examples [00:01, 1338.66 examples/s]
Generating train split: 2170 examples [00:01, 1423.52 examples/s]
Generating train split: 2420 examples [00:02, 1504.76 examples/s]
Generating train split: 2632 examples [00:02, 1471.35 examples/s]
Generating train split: 2843 examples [00:02, 1619.36 examples/s]
Generating train split: 3074 examples [00:02, 1345.54 examples/s]
Generating train split: 3246 examples [00:02, 1419.60 examples/s]
Generating train split: 3444 examples [00:02, 1548.34 examples/s]
Generating train split: 3631 examples [00:02, 1622.73 examples/s]
Generating train split: 3807 examples [00:02, 1647.77 examples/s]
Generating train split: 4000 examples [00:03, 1339.79 examples/s]
Generating train split: 4221 examples [00:03, 1378.81 examples/s]
Generating train split: 4394 examples [00:03, 1450.17 examples/s]
Generating train split: 4581 examples [00:03, 1551.81 examples/s]
Generating train split: 4746 examples [00:03, 1577.15 examples/s]
Generating train split: 4915 examples [00:03, 1601.50 examples/s]
Generating train split: 5083 examples [00:03, 1406.14 examples/s]
Generating train split: 5256 examples [00:03, 1480.60 examples/s]
Generating train split: 5424 examples [00:04, 1525.76 examples/s]
Generating train split: 5615 examples [00:04, 1626.54 examples/s]
Generating train split: 5847 examples [00:04, 1819.32 examples/s]
Generating train split: 6096 examples [00:04, 1628.07 examples/s]
Generating train split: 6318 examples [00:04, 1772.44 examples/s]
Generating train split: 6511 examples [00:04, 1812.82 examples/s]
Generating train split: 6751 examples [00:04, 1732.66 examples/s]
Generating train split: 7000 examples [00:05, 1480.66 examples/s]
Generating train split: 7170 examples [00:05, 1525.90 examples/s]
Generating train split: 7335 examples [00:05, 1552.06 examples/s]
Generating train split: 7520 examples [00:05, 1614.80 examples/s]
Generating train split: 7698 examples [00:05, 1655.31 examples/s]
Generating train split: 7949 examples [00:05, 1657.55 examples/s]
Generating train split: 8177 examples [00:05, 1419.31 examples/s]
Generating train split: 8352 examples [00:05, 1484.50 examples/s]
Generating train split: 8512 examples [00:06, 1501.58 examples/s]
Generating train split: 8729 examples [00:06, 1667.42 examples/s]
Generating train split: 8910 examples [00:06, 1705.12 examples/s]
Generating train split: 9165 examples [00:06, 1438.58 examples/s]
Generating train split: 9330 examples [00:06, 1483.22 examples/s]
Generating train split: 9501 examples [00:06, 1533.76 examples/s]
Generating train split: 9668 examples [00:06, 1565.15 examples/s]
Generating train split: 9880 examples [00:06, 1712.02 examples/s]
Generating train split: 10074 examples [00:07, 1392.32 examples/s]
Generating train split: 10320 examples [00:07, 1464.61 examples/s]
Generating train split: 10484 examples [00:07, 1500.61 examples/s]
Generating train split: 10706 examples [00:07, 1488.11 examples/s]
Generating train split: 10890 examples [00:07, 1561.42 examples/s]
Generating train split: 11088 examples [00:07, 1344.40 examples/s]
Generating train split: 11272 examples [00:07, 1451.97 examples/s]
Generating train split: 11444 examples [00:07, 1510.27 examples/s]
Generating train split: 11637 examples [00:08, 1616.70 examples/s]
Generating train split: 11810 examples [00:08, 1644.38 examples/s]
Generating train split: 11996 examples [00:08, 1703.68 examples/s]
Generating train split: 12185 examples [00:08, 1474.44 examples/s]
Generating train split: 12353 examples [00:08, 1522.07 examples/s]
Generating train split: 12557 examples [00:08, 1656.48 examples/s]
Generating train split: 12739 examples [00:08, 1699.51 examples/s]
Generating train split: 12918 examples [00:08, 1721.07 examples/s]
Generating train split: 13182 examples [00:09, 1494.64 examples/s]
Generating train split: 13355 examples [00:09, 1549.45 examples/s]
Generating train split: 13579 examples [00:09, 1719.46 examples/s]
Generating train split: 13672 examples [00:09, 1464.90 examples/s]
Generating validation split
topic_segmentation
06/19/2024 22:00:31 - INFO - datasets.builder - Generating validation split

Generating validation split: 0 examples [00:00, ? examples/s]
Generating validation split: 69 examples [00:00, 579.82 examples/s]
Generating validation split: 218 examples [00:00, 1069.82 examples/s]
Generating validation split: 373 examples [00:00, 1276.30 examples/s]
Generating validation split: 520 examples [00:00, 1341.50 examples/s]
Generating validation split: 703 examples [00:00, 1510.53 examples/s]
Generating validation split: 881 examples [00:00, 1597.28 examples/s]
Generating validation split: 1071 examples [00:00, 1270.73 examples/s]
Generating validation split: 1274 examples [00:00, 1464.39 examples/s]
Generating validation split: 1467 examples [00:01, 1587.66 examples/s]
Generating validation split: 1713 examples [00:01, 1601.55 examples/s]
Generating validation split: 1906 examples [00:01, 1677.42 examples/s]
Generating validation split: 1950 examples [00:01, 1426.26 examples/s]
Generating test split
topic_segmentation
06/19/2024 22:00:32 - INFO - datasets.builder - Generating test split

Generating test split: 0 examples [00:00, ? examples/s]
Generating test split: 1 examples [00:00,  7.47 examples/s]
Generating test split: 159 examples [00:00, 810.44 examples/s]
Generating test split: 302 examples [00:00, 1066.26 examples/s]
Generating test split: 477 examples [00:00, 1316.18 examples/s]
Generating test split: 663 examples [00:00, 1501.87 examples/s]
Generating test split: 826 examples [00:00, 1538.20 examples/s]
Generating test split: 1000 examples [00:00, 1257.60 examples/s]
Generating test split: 1151 examples [00:00, 1322.06 examples/s]
Generating test split: 1322 examples [00:01, 1425.72 examples/s]
Generating test split: 1495 examples [00:01, 1508.46 examples/s]
Generating test split: 1683 examples [00:01, 1610.97 examples/s]
Generating test split: 1891 examples [00:01, 1745.28 examples/s]
Generating test split: 2077 examples [00:01, 1408.22 examples/s]
Generating test split: 2256 examples [00:01, 1500.50 examples/s]
Generating test split: 2427 examples [00:01, 1543.24 examples/s]
Generating test split: 2619 examples [00:01, 1644.22 examples/s]
Generating test split: 2837 examples [00:01, 1571.16 examples/s]
Generating test split: 3071 examples [00:02, 1378.60 examples/s]
Generating test split: 3265 examples [00:02, 1501.05 examples/s]
Generating test split: 3458 examples [00:02, 1601.68 examples/s]
Generating test split: 3718 examples [00:02, 1630.09 examples/s]
Generating test split: 3897 examples [00:02, 1666.47 examples/s]
Generating test split: 3904 examples [00:02, 1445.18 examples/s]
Dataset wiki_section_city downloaded and prepared to /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4. Subsequent calls will reuse this data.
topic_segmentation
06/19/2024 22:00:35 - INFO - datasets.builder - Dataset wiki_section_city downloaded and prepared to /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4. Subsequent calls will reuse this data.
[INFO|configuration_utils.py:658] 2024-06-19 22:00:36,128 >> loading configuration file /projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41/config.json
[INFO|configuration_utils.py:712] 2024-06-19 22:00:36,132 >> Model config BertConfig {
  "_name_or_path": "/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41",
  "architectures": [
    "BertWithDAForSentenceLabelingTopicSegmentation"
  ],
  "attention_probs_dropout_prob": 0.1,
  "cache_dir": null,
  "cl_anchor_level": "eop_list",
  "cl_loss_weight": 0.5,
  "cl_negative_k": 3,
  "cl_positive_k": 1,
  "cl_temp": 0.1,
  "classifier_dropout": null,
  "config_name": null,
  "directionality": "bidi",
  "do_cssl": true,
  "do_da_ts": true,
  "do_tssp": true,
  "finetuning_task": "topic_segment",
  "focal_loss_gamma": 0.0,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 1024,
  "id2label": {
    "0": "B-EOP",
    "1": "O"
  },
  "ignore_mismatched_sizes": false,
  "initializer_range": 0.02,
  "intermediate_size": 4096,
  "label2id": {
    "B-EOP": 0,
    "O": 1
  },
  "layer_norm_eps": 1e-12,
  "max_position_embeddings": 512,
  "model_name_or_path": "neuralmind/bert-large-portuguese-cased",
  "model_revision": "main",
  "model_type": "bert",
  "num_attention_heads": 16,
  "num_gpu": 1,
  "num_hidden_layers": 24,
  "num_topic_labels": 0,
  "num_tssp_labels": 3,
  "output_past": true,
  "pad_token_id": 0,
  "pooler_fc_size": 768,
  "pooler_num_attention_heads": 12,
  "pooler_num_fc_layers": 3,
  "pooler_size_per_head": 128,
  "pooler_type": "first_token_transform",
  "position_embedding_type": "absolute",
  "sentence_pooler_type": null,
  "tokenizer_name": null,
  "torch_dtype": "float32",
  "transformers_version": "4.26.0",
  "ts_loss_weight": 1.0,
  "ts_score_predictor": "lt",
  "ts_score_predictor_cos_temp": 1,
  "tssp_ablation": "none",
  "tssp_loss_weight": 1.0,
  "type_vocab_size": 2,
  "use_auth_token": false,
  "use_cache": true,
  "vocab_size": 29795,
  "weight_label_zero": 0.5
}

[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:00:36,145 >> loading file vocab.txt
[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:00:36,145 >> loading file tokenizer.json
[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:00:36,145 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:00:36,145 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:00:36,145 >> loading file tokenizer_config.json
[INFO|modeling_utils.py:2272] 2024-06-19 22:00:36,225 >> loading weights file /projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41/pytorch_model.bin
[INFO|modeling_utils.py:2857] 2024-06-19 22:01:00,370 >> All model checkpoint weights were used when initializing BertWithDAForSentenceLabelingTopicSegmentation.

[INFO|modeling_utils.py:2865] 2024-06-19 22:01:00,370 >> All the weights of BertWithDAForSentenceLabelingTopicSegmentation were initialized from the model checkpoint at /projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41.
If your task is similar to the task the model of the checkpoint was trained on, you can already use BertWithDAForSentenceLabelingTopicSegmentation for predictions without further training.
Process #0 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00000_of_00005.arrow
labels_are_int:  False
label_to_id:  {'B-EOP': 0, 'O': 1}
config:  BertConfig {
  "_name_or_path": "/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41",
  "architectures": [
    "BertWithDAForSentenceLabelingTopicSegmentation"
  ],
  "attention_probs_dropout_prob": 0.1,
  "cache_dir": null,
  "cl_anchor_level": "eop_matrix",
  "cl_loss_weight": 0.0,
  "cl_negative_k": 1,
  "cl_positive_k": 1,
  "cl_temp": 1,
  "classifier_dropout": null,
  "config_name": null,
  "directionality": "bidi",
  "do_cssl": false,
  "do_da_ts": false,
  "do_tssp": false,
  "finetuning_task": "topic_segment",
  "focal_loss_gamma": 0.0,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 1024,
  "id2label": {
    "0": "B-EOP",
    "1": "O"
  },
  "ignore_mismatched_sizes": false,
  "initializer_range": 0.02,
  "intermediate_size": 4096,
  "label2id": {
    "B-EOP": 0,
    "O": 1
  },
  "layer_norm_eps": 1e-12,
  "max_position_embeddings": 512,
  "model_name_or_path": "/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41",
  "model_revision": "main",
  "model_type": "bert",
  "num_attention_heads": 16,
  "num_gpu": 1,
  "num_hidden_layers": 24,
  "num_topic_labels": 0,
  "num_tssp_labels": 3,
  "output_past": true,
  "pad_token_id": 0,
  "pooler_fc_size": 768,
  "pooler_num_attention_heads": 12,
  "pooler_num_fc_layers": 3,
  "pooler_size_per_head": 128,
  "pooler_type": "first_token_transform",
  "position_embedding_type": "absolute",
  "sentence_pooler_type": null,
  "tokenizer_name": null,
  "torch_dtype": "float32",
  "transformers_version": "4.26.0",
  "ts_loss_weight": 1.0,
  "ts_score_predictor": "lt",
  "ts_score_predictor_cos_temp": 1,
  "tssp_ablation": "none",
  "tssp_loss_weight": 0.0,
  "type_vocab_size": 2,
  "use_auth_token": false,
  "use_cache": true,
  "vocab_size": 29795,
  "weight_label_zero": 0.5
}

model_type:  bert
final max_seq_length:  512
label_list:  ['B-EOP', 'O']
06/19/2024 22:01:00 - INFO - datasets.arrow_dataset - Process #0 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00000_of_00005.arrow
Process #1 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00001_of_00005.arrow
06/19/2024 22:01:00 - INFO - datasets.arrow_dataset - Process #1 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00001_of_00005.arrow
Process #2 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00002_of_00005.arrow
06/19/2024 22:01:00 - INFO - datasets.arrow_dataset - Process #2 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00002_of_00005.arrow
Process #3 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00003_of_00005.arrow
06/19/2024 22:01:00 - INFO - datasets.arrow_dataset - Process #3 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00003_of_00005.arrow
Process #4 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00004_of_00005.arrow
06/19/2024 22:01:00 - INFO - datasets.arrow_dataset - Process #4 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00004_of_00005.arrow
Spawning 5 processes
06/19/2024 22:01:00 - INFO - datasets.arrow_dataset - Spawning 5 processes

Running tokenizer on prediction dataset (num_proc=5):   0%|          | 0/3904 [00:00<?, ? examples/s]
Running tokenizer on prediction dataset (num_proc=5):   0%|          | 0/3904 [00:08<?, ? examples/s]
0
06/19/2024 22:01:19 - WARNING - __main__ - Process rank: -1, device: cuda:0, n_gpu: 1distributed training: False, 16-bits training: False
06/19/2024 22:01:19 - INFO - __main__ - Training/evaluation parameters TrainingArguments(
_n_gpu=1,
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_pin_memory=True,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
do_eval=False,
do_predict=True,
do_train=False,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=no,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
gradient_accumulation_steps=1,
gradient_checkpointing=False,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=5e-05,
length_column_name=length,
load_best_model_at_end=False,
local_rank=-1,
log_level=passive,
log_level_replica=passive,
log_on_each_node=True,
logging_dir=/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41/runs/Jun19_22-01-19_ppi-nlp6,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=steps,
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
no_cuda=False,
num_train_epochs=3.0,
optim=adamw_hf,
optim_args=None,
output_dir=/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41,
overwrite_output_dir=False,
past_index=-1,
per_device_eval_batch_size=4,
per_device_train_batch_size=8,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=[],
resume_from_checkpoint=None,
run_name=/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41,
save_on_each_node=False,
save_steps=500,
save_strategy=steps,
save_total_limit=None,
seed=42,
sharded_ddp=[],
skip_memory_metrics=True,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
xpu_backend=None,
)
/home/ext_maiara_frodrigues2000_gmail_/.pyenv/versions/spokennlp/lib/python3.8/site-packages/datasets/load.py:2555: FutureWarning: 'ignore_verifications' was deprecated in favor of 'verification_mode' in version 2.9.1 and will be removed in 3.0.0.
You can remove this warning by passing 'verification_mode=no_checks' instead.
  warnings.warn(
/home/ext_maiara_frodrigues2000_gmail_/.pyenv/versions/spokennlp/lib/python3.8/site-packages/datasets/load.py:929: FutureWarning: The repository for wiki_section_city contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at ./src/datasets/wiki_section_city/wiki_section_city.py
You can avoid this message in future by passing the argument `trust_remote_code=True`.
Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.
  warnings.warn(
No config specified, defaulting to the single config: wiki_section_city/WikiSectionCityForDocumentSegmentation
06/19/2024 22:01:19 - INFO - datasets.builder - No config specified, defaulting to the single config: wiki_section_city/WikiSectionCityForDocumentSegmentation
Using custom data configuration WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad
06/19/2024 22:01:19 - INFO - datasets.builder - Using custom data configuration WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad
Loading Dataset Infos from /home/ext_luti4497_gmail_com/.cache/huggingface/modules/datasets_modules/datasets/wiki_section_city/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4
06/19/2024 22:01:19 - INFO - datasets.info - Loading Dataset Infos from /home/ext_luti4497_gmail_com/.cache/huggingface/modules/datasets_modules/datasets/wiki_section_city/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4
Generating dataset wiki_section_city (/projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4)
06/19/2024 22:01:19 - INFO - datasets.builder - Generating dataset wiki_section_city (/projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4)
Downloading and preparing dataset wiki_section_city/WikiSectionCityForDocumentSegmentation to /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4...
06/19/2024 22:01:19 - INFO - datasets.builder - Downloading and preparing dataset wiki_section_city/WikiSectionCityForDocumentSegmentation to /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4...
Downloading took 0.0 min
06/19/2024 22:01:19 - INFO - datasets.download.download_manager - Downloading took 0.0 min
Checksum Computation took 0.0 min
06/19/2024 22:01:19 - INFO - datasets.download.download_manager - Checksum Computation took 0.0 min
Generating train split
06/19/2024 22:01:19 - INFO - datasets.builder - Generating train split

Generating train split: 0 examples [00:00, ? examples/s]
Generating train split: 1 examples [00:00,  1.86 examples/s]
Generating train split: 164 examples [00:00, 344.11 examples/s]
Generating train split: 327 examples [00:00, 640.15 examples/s]
Generating train split: 487 examples [00:00, 873.61 examples/s]
Generating train split: 676 examples [00:00, 1135.01 examples/s]
Generating train split: 865 examples [00:01, 1332.98 examples/s]
Generating train split: 1085 examples [00:01, 1203.80 examples/s]
Generating train split: 1249 examples [00:01, 1302.58 examples/s]
Generating train split: 1444 examples [00:01, 1462.41 examples/s]
Generating train split: 1623 examples [00:01, 1548.04 examples/s]
Generating train split: 1873 examples [00:01, 1581.85 examples/s]
Generating train split: 2088 examples [00:01, 1354.26 examples/s]
Generating train split: 2312 examples [00:02, 1394.05 examples/s]
Generating train split: 2488 examples [00:02, 1474.50 examples/s]
Generating train split: 2715 examples [00:02, 1477.61 examples/s]
Generating train split: 2901 examples [00:02, 1564.50 examples/s]
Generating train split: 3075 examples [00:02, 1305.09 examples/s]
Generating train split: 3244 examples [00:02, 1387.65 examples/s]
Generating train split: 3439 examples [00:02, 1520.39 examples/s]
Generating train split: 3612 examples [00:02, 1573.60 examples/s]
Generating train split: 3783 examples [00:03, 1607.63 examples/s]
Generating train split: 4000 examples [00:03, 1339.28 examples/s]
Generating train split: 4170 examples [00:03, 1418.57 examples/s]
Generating train split: 4362 examples [00:03, 1541.76 examples/s]
Generating train split: 4561 examples [00:03, 1657.36 examples/s]
Generating train split: 4740 examples [00:03, 1670.80 examples/s]
Generating train split: 4920 examples [00:03, 1704.66 examples/s]
Generating train split: 5191 examples [00:03, 1556.63 examples/s]
Generating train split: 5381 examples [00:04, 1638.00 examples/s]
Generating train split: 5553 examples [00:04, 1658.23 examples/s]
Generating train split: 5781 examples [00:04, 1823.54 examples/s]
Generating train split: 5979 examples [00:04, 1854.55 examples/s]
Generating train split: 6222 examples [00:04, 1685.10 examples/s]
Generating train split: 6410 examples [00:04, 1721.16 examples/s]
Generating train split: 6649 examples [00:04, 1673.17 examples/s]
Generating train split: 6887 examples [00:04, 1638.36 examples/s]
Generating train split: 7083 examples [00:05, 1427.36 examples/s]
Generating train split: 7245 examples [00:05, 1469.27 examples/s]
Generating train split: 7409 examples [00:05, 1508.98 examples/s]
Generating train split: 7593 examples [00:05, 1584.40 examples/s]
Generating train split: 7762 examples [00:05, 1609.11 examples/s]
Generating train split: 7937 examples [00:05, 1641.42 examples/s]
Generating train split: 8168 examples [00:05, 1348.83 examples/s]
Generating train split: 8322 examples [00:05, 1391.53 examples/s]
Generating train split: 8551 examples [00:06, 1432.31 examples/s]
Generating train split: 8771 examples [00:06, 1602.43 examples/s]
Generating train split: 8952 examples [00:06, 1646.20 examples/s]
Generating train split: 9160 examples [00:06, 1403.59 examples/s]
Generating train split: 9318 examples [00:06, 1438.63 examples/s]
Generating train split: 9489 examples [00:06, 1503.82 examples/s]
Generating train split: 9651 examples [00:06, 1526.44 examples/s]
Generating train split: 9857 examples [00:06, 1665.31 examples/s]
Generating train split: 10070 examples [00:07, 1373.33 examples/s]
Generating train split: 10315 examples [00:07, 1442.57 examples/s]
Generating train split: 10479 examples [00:07, 1485.39 examples/s]
Generating train split: 10704 examples [00:07, 1483.83 examples/s]
Generating train split: 10894 examples [00:07, 1577.27 examples/s]
Generating train split: 11092 examples [00:07, 1361.95 examples/s]
Generating train split: 11277 examples [00:07, 1468.39 examples/s]
Generating train split: 11445 examples [00:08, 1516.88 examples/s]
Generating train split: 11632 examples [00:08, 1600.38 examples/s]
Generating train split: 11807 examples [00:08, 1633.90 examples/s]
Generating train split: 11993 examples [00:08, 1693.04 examples/s]
Generating train split: 12178 examples [00:08, 1428.25 examples/s]
Generating train split: 12338 examples [00:08, 1445.53 examples/s]
Generating train split: 12543 examples [00:08, 1600.38 examples/s]
Generating train split: 12734 examples [00:08, 1673.56 examples/s]
Generating train split: 12919 examples [00:08, 1718.61 examples/s]
Generating train split: 13173 examples [00:09, 1473.04 examples/s]
Generating train split: 13349 examples [00:09, 1539.35 examples/s]
Generating train split: 13549 examples [00:09, 1642.87 examples/s]
Generating train split: 13672 examples [00:09, 1454.41 examples/s]
Generating validation split
topic_segmentation
06/19/2024 22:01:28 - INFO - datasets.builder - Generating validation split

Generating validation split: 0 examples [00:00, ? examples/s]
Generating validation split: 69 examples [00:00, 608.54 examples/s]
Generating validation split: 217 examples [00:00, 1089.66 examples/s]
Generating validation split: 367 examples [00:00, 1264.36 examples/s]
Generating validation split: 524 examples [00:00, 1378.19 examples/s]
Generating validation split: 703 examples [00:00, 1519.31 examples/s]
Generating validation split: 869 examples [00:00, 1565.22 examples/s]
Generating validation split: 1068 examples [00:00, 1252.69 examples/s]
Generating validation split: 1271 examples [00:00, 1448.10 examples/s]
Generating validation split: 1464 examples [00:01, 1575.39 examples/s]
Generating validation split: 1713 examples [00:01, 1595.15 examples/s]
Generating validation split: 1906 examples [00:01, 1673.40 examples/s]
Generating validation split: 1950 examples [00:01, 1431.59 examples/s]
Generating test split
topic_segmentation
06/19/2024 22:01:30 - INFO - datasets.builder - Generating test split

Generating test split: 0 examples [00:00, ? examples/s]
Generating test split: 1 examples [00:00,  8.19 examples/s]
Generating test split: 155 examples [00:00, 825.12 examples/s]
Generating test split: 295 examples [00:00, 1071.91 examples/s]
Generating test split: 465 examples [00:00, 1308.99 examples/s]
Generating test split: 648 examples [00:00, 1489.93 examples/s]
Generating test split: 814 examples [00:00, 1542.01 examples/s]
Generating test split: 986 examples [00:00, 1591.45 examples/s]
Generating test split: 1152 examples [00:00, 1267.31 examples/s]
Generating test split: 1321 examples [00:01, 1376.15 examples/s]
Generating test split: 1495 examples [00:01, 1471.51 examples/s]
Generating test split: 1682 examples [00:01, 1579.17 examples/s]
Generating test split: 1882 examples [00:01, 1693.42 examples/s]
Generating test split: 2077 examples [00:01, 1402.70 examples/s]
Generating test split: 2257 examples [00:01, 1499.42 examples/s]
Generating test split: 2425 examples [00:01, 1540.54 examples/s]
Generating test split: 2609 examples [00:01, 1616.79 examples/s]
Generating test split: 2835 examples [00:01, 1568.50 examples/s]
Generating test split: 3000 examples [00:02, 1364.80 examples/s]
Generating test split: 3162 examples [00:02, 1425.57 examples/s]
Generating test split: 3367 examples [00:02, 1584.11 examples/s]
Generating test split: 3589 examples [00:02, 1523.09 examples/s]
Generating test split: 3752 examples [00:02, 1546.15 examples/s]
Generating test split: 3904 examples [00:02, 1420.90 examples/s]
Dataset wiki_section_city downloaded and prepared to /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4. Subsequent calls will reuse this data.
topic_segmentation
06/19/2024 22:01:32 - INFO - datasets.builder - Dataset wiki_section_city downloaded and prepared to /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4. Subsequent calls will reuse this data.
[INFO|configuration_utils.py:658] 2024-06-19 22:01:33,637 >> loading configuration file /projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41/config.json
[INFO|configuration_utils.py:712] 2024-06-19 22:01:33,641 >> Model config BertConfig {
  "_name_or_path": "/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41",
  "architectures": [
    "BertWithDAForSentenceLabelingTopicSegmentation"
  ],
  "attention_probs_dropout_prob": 0.1,
  "cache_dir": null,
  "cl_anchor_level": "eop_list",
  "cl_loss_weight": 0.5,
  "cl_negative_k": 3,
  "cl_positive_k": 1,
  "cl_temp": 0.1,
  "classifier_dropout": null,
  "config_name": null,
  "directionality": "bidi",
  "do_cssl": true,
  "do_da_ts": true,
  "do_tssp": true,
  "finetuning_task": "topic_segment",
  "focal_loss_gamma": 0.0,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 1024,
  "id2label": {
    "0": "B-EOP",
    "1": "O"
  },
  "ignore_mismatched_sizes": false,
  "initializer_range": 0.02,
  "intermediate_size": 4096,
  "label2id": {
    "B-EOP": 0,
    "O": 1
  },
  "layer_norm_eps": 1e-12,
  "max_position_embeddings": 512,
  "model_name_or_path": "neuralmind/bert-large-portuguese-cased",
  "model_revision": "main",
  "model_type": "bert",
  "num_attention_heads": 16,
  "num_gpu": 1,
  "num_hidden_layers": 24,
  "num_topic_labels": 0,
  "num_tssp_labels": 3,
  "output_past": true,
  "pad_token_id": 0,
  "pooler_fc_size": 768,
  "pooler_num_attention_heads": 12,
  "pooler_num_fc_layers": 3,
  "pooler_size_per_head": 128,
  "pooler_type": "first_token_transform",
  "position_embedding_type": "absolute",
  "sentence_pooler_type": null,
  "tokenizer_name": null,
  "torch_dtype": "float32",
  "transformers_version": "4.26.0",
  "ts_loss_weight": 1.0,
  "ts_score_predictor": "lt",
  "ts_score_predictor_cos_temp": 1,
  "tssp_ablation": "none",
  "tssp_loss_weight": 1.0,
  "type_vocab_size": 2,
  "use_auth_token": false,
  "use_cache": true,
  "vocab_size": 29795,
  "weight_label_zero": 0.5
}

[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:01:33,643 >> loading file vocab.txt
[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:01:33,643 >> loading file tokenizer.json
[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:01:33,643 >> loading file added_tokens.json
[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:01:33,643 >> loading file special_tokens_map.json
[INFO|tokenization_utils_base.py:1800] 2024-06-19 22:01:33,643 >> loading file tokenizer_config.json
[INFO|modeling_utils.py:2272] 2024-06-19 22:01:33,668 >> loading weights file /projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41/pytorch_model.bin
[INFO|modeling_utils.py:2857] 2024-06-19 22:01:37,435 >> All model checkpoint weights were used when initializing BertWithDAForSentenceLabelingTopicSegmentation.

[INFO|modeling_utils.py:2865] 2024-06-19 22:01:37,436 >> All the weights of BertWithDAForSentenceLabelingTopicSegmentation were initialized from the model checkpoint at /projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41.
If your task is similar to the task the model of the checkpoint was trained on, you can already use BertWithDAForSentenceLabelingTopicSegmentation for predictions without further training.
Process #0 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00000_of_00005.arrow
labels_are_int:  False
label_to_id:  {'B-EOP': 0, 'O': 1}
config:  BertConfig {
  "_name_or_path": "/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41",
  "architectures": [
    "BertWithDAForSentenceLabelingTopicSegmentation"
  ],
  "attention_probs_dropout_prob": 0.1,
  "cache_dir": null,
  "cl_anchor_level": "eop_matrix",
  "cl_loss_weight": 0.0,
  "cl_negative_k": 1,
  "cl_positive_k": 1,
  "cl_temp": 1,
  "classifier_dropout": null,
  "config_name": null,
  "directionality": "bidi",
  "do_cssl": false,
  "do_da_ts": false,
  "do_tssp": false,
  "finetuning_task": "topic_segment",
  "focal_loss_gamma": 0.0,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 1024,
  "id2label": {
    "0": "B-EOP",
    "1": "O"
  },
  "ignore_mismatched_sizes": false,
  "initializer_range": 0.02,
  "intermediate_size": 4096,
  "label2id": {
    "B-EOP": 0,
    "O": 1
  },
  "layer_norm_eps": 1e-12,
  "max_position_embeddings": 512,
  "model_name_or_path": "/projeto/SpokenNLP/emnlp2023-topic_segmentation/output/neuralmind/bert-large-portuguese-cased-finetune-wiki_section_disease/seed42-seq512-lr5e-05-epoch5-bs4-ts1.0-tssp1.0-cl0.5-2024-05-30_21:01:41",
  "model_revision": "main",
  "model_type": "bert",
  "num_attention_heads": 16,
  "num_gpu": 1,
  "num_hidden_layers": 24,
  "num_topic_labels": 0,
  "num_tssp_labels": 3,
  "output_past": true,
  "pad_token_id": 0,
  "pooler_fc_size": 768,
  "pooler_num_attention_heads": 12,
  "pooler_num_fc_layers": 3,
  "pooler_size_per_head": 128,
  "pooler_type": "first_token_transform",
  "position_embedding_type": "absolute",
  "sentence_pooler_type": null,
  "tokenizer_name": null,
  "torch_dtype": "float32",
  "transformers_version": "4.26.0",
  "ts_loss_weight": 1.0,
  "ts_score_predictor": "lt",
  "ts_score_predictor_cos_temp": 1,
  "tssp_ablation": "none",
  "tssp_loss_weight": 0.0,
  "type_vocab_size": 2,
  "use_auth_token": false,
  "use_cache": true,
  "vocab_size": 29795,
  "weight_label_zero": 0.5
}

model_type:  bert
final max_seq_length:  512
label_list:  ['B-EOP', 'O']
06/19/2024 22:01:37 - INFO - datasets.arrow_dataset - Process #0 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00000_of_00005.arrow
Process #1 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00001_of_00005.arrow
06/19/2024 22:01:37 - INFO - datasets.arrow_dataset - Process #1 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00001_of_00005.arrow
Process #2 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00002_of_00005.arrow
06/19/2024 22:01:37 - INFO - datasets.arrow_dataset - Process #2 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00002_of_00005.arrow
Process #3 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00003_of_00005.arrow
06/19/2024 22:01:37 - INFO - datasets.arrow_dataset - Process #3 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00003_of_00005.arrow
Process #4 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00004_of_00005.arrow
06/19/2024 22:01:37 - INFO - datasets.arrow_dataset - Process #4 will write at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00004_of_00005.arrow
Spawning 5 processes
06/19/2024 22:01:37 - INFO - datasets.arrow_dataset - Spawning 5 processes

Running tokenizer on prediction dataset (num_proc=5):   0%|          | 0/3904 [00:00<?, ? examples/s]Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00004_of_00005.arrow
06/19/2024 22:01:58 - INFO - datasets.arrow_dataset - Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00004_of_00005.arrow
Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00002_of_00005.arrow
06/19/2024 22:01:59 - INFO - datasets.arrow_dataset - Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00002_of_00005.arrow
Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00001_of_00005.arrow
06/19/2024 22:02:00 - INFO - datasets.arrow_dataset - Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00001_of_00005.arrow
Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00003_of_00005.arrow
06/19/2024 22:02:00 - INFO - datasets.arrow_dataset - Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00003_of_00005.arrow
Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00000_of_00005.arrow
06/19/2024 22:02:01 - INFO - datasets.arrow_dataset - Caching processed dataset at /projeto/SpokenNLP/emnlp2023-topic_segmentation/cached_data/wiki_section_city_neuralmind/bert-large-portuguese-cased_512/wiki_section_city/WikiSectionCityForDocumentSegmentation-15c5ff72c77600ad/1.1.1/cafcd4e7f86f04cfd46e90d782f42526ea3b1d6deab48ae6dcf7f4bab4f252d4/cache-bert_wiki_section_city_512_test_00000_of_00005.arrow

Running tokenizer on prediction dataset (num_proc=5):  20%|β–ˆβ–‰        | 780/3904 [00:31<02:05, 24.91 examples/s]
Running tokenizer on prediction dataset (num_proc=5):  60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰    | 2342/3904 [00:32<00:16, 92.11 examples/s]
Running tokenizer on prediction dataset (num_proc=5):  80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰  | 3123/3904 [00:32<00:05, 136.98 examples/s]
Running tokenizer on prediction dataset (num_proc=5): 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3904/3904 [00:33<00:00, 193.46 examples/s]
Running tokenizer on prediction dataset (num_proc=5): 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3904/3904 [00:38<00:00, 101.32 examples/s]
Concatenating 5 shards
06/19/2024 22:02:16 - INFO - datasets.arrow_dataset - Concatenating 5 shards
06/19/2024 22:02:19 - INFO - __main__ - *** Predict test set ***
./src/ts_sentence_seq_labeling.py:1017: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library πŸ€— Evaluate: https://huggingface.co/docs/evaluate
  metric = load_metric(data_args.metric_name)
/home/ext_maiara_frodrigues2000_gmail_/.pyenv/versions/spokennlp/lib/python3.8/site-packages/datasets/load.py:855: FutureWarning: The repository for seqeval contains custom code which must be executed to correctly load the metric. You can inspect the repository content at ./src/metrics/seqeval.py
You can avoid this message in future by passing the argument `trust_remote_code=True`.
Passing `trust_remote_code=True` will be mandatory to load this metric from the next major release of `datasets`.
  warnings.warn(
[INFO|trainer.py:710] 2024-06-19 22:02:21,579 >> The following columns in the test set don't have a corresponding argument in `BertWithDAForSentenceLabelingTopicSegmentation.forward` and have been ignored: sentences, example_id. If sentences, example_id are not expected by `BertWithDAForSentenceLabelingTopicSegmentation.forward`,  you can safely ignore this message.
[INFO|trainer.py:2964] 2024-06-19 22:02:21,586 >> ***** Running Prediction *****
[INFO|trainer.py:2966] 2024-06-19 22:02:21,586 >>   Num examples = 15271
[INFO|trainer.py:2969] 2024-06-19 22:02:21,586 >>   Batch size = 4
num predict samples:  15271
num predict examples:  3904

  0%|          | 0/3818 [00:00<?, ?it/s]
  0%|          | 2/3818 [00:00<12:30,  5.08it/s]
  0%|          | 3/3818 [00:00<17:54,  3.55it/s]
  0%|          | 4/3818 [00:01<20:32,  3.09it/s]
  0%|          | 5/3818 [00:01<22:04,  2.88it/s]
  0%|          | 6/3818 [00:01<23:08,  2.74it/s]
  0%|          | 7/3818 [00:02<23:44,  2.68it/s]
  0%|          | 8/3818 [00:02<24:11,  2.63it/s]
  0%|          | 9/3818 [00:03<24:28,  2.59it/s]
  0%|          | 10/3818 [00:03<24:36,  2.58it/s]
  0%|          | 11/3818 [00:03<24:46,  2.56it/s]
  0%|          | 12/3818 [00:04<24:55,  2.54it/s]
  0%|          | 13/3818 [00:04<24:59,  2.54it/s]
  0%|          | 14/3818 [00:05<25:07,  2.52it/s]
  0%|          | 15/3818 [00:05<25:08,  2.52it/s]
  0%|          | 16/3818 [00:05<25:07,  2.52it/s]
  0%|          | 17/3818 [00:06<25:14,  2.51it/s]
  0%|          | 18/3818 [00:06<25:11,  2.51it/s]
  0%|          | 19/3818 [00:07<25:13,  2.51it/s]
  1%|          | 20/3818 [00:07<25:15,  2.51it/s]
  1%|          | 21/3818 [00:07<25:13,  2.51it/s]
  1%|          | 22/3818 [00:08<25:10,  2.51it/s]
  1%|          | 23/3818 [00:08<25:17,  2.50it/s]
  1%|          | 24/3818 [00:09<25:18,  2.50it/s]
  1%|          | 25/3818 [00:09<25:19,  2.50it/s]
  1%|          | 26/3818 [00:09<25:21,  2.49it/s]
  1%|          | 27/3818 [00:10<25:17,  2.50it/s]
  1%|          | 28/3818 [00:10<25:19,  2.49it/s]
  1%|          | 29/3818 [00:11<25:21,  2.49it/s]
  1%|          | 30/3818 [00:11<25:18,  2.49it/s]
  1%|          | 31/3818 [00:11<25:18,  2.49it/s]
  1%|          | 32/3818 [00:12<25:21,  2.49it/s]
  1%|          | 33/3818 [00:12<25:20,  2.49it/s]
  1%|          | 34/3818 [00:13<25:16,  2.49it/s]
  1%|          | 35/3818 [00:13<25:17,  2.49it/s]
  1%|          | 36/3818 [00:13<25:25,  2.48it/s]
  1%|          | 37/3818 [00:14<25:23,  2.48it/s]
  1%|          | 38/3818 [00:14<25:25,  2.48it/s]
  1%|          | 39/3818 [00:15<25:24,  2.48it/s]
  1%|          | 40/3818 [00:15<25:23,  2.48it/s]
  1%|          | 41/3818 [00:15<25:26,  2.47it/s]
  1%|          | 42/3818 [00:16<25:25,  2.47it/s]
  1%|          | 43/3818 [00:16<25:27,  2.47it/s]
  1%|          | 44/3818 [00:17<25:25,  2.47it/s]
  1%|          | 45/3818 [00:17<25:25,  2.47it/s]
  1%|          | 46/3818 [00:18<25:30,  2.46it/s]
  1%|          | 47/3818 [00:18<25:25,  2.47it/s]
  1%|▏         | 48/3818 [00:18<25:25,  2.47it/s]
  1%|▏         | 49/3818 [00:19<25:26,  2.47it/s]
  1%|▏         | 50/3818 [00:19<25:22,  2.47it/s]
  1%|▏         | 51/3818 [00:20<25:27,  2.47it/s]
  1%|▏         | 52/3818 [00:20<25:27,  2.46it/s]
  1%|▏         | 53/3818 [00:20<25:28,  2.46it/s]
  1%|▏         | 54/3818 [00:21<25:22,  2.47it/s]
  1%|▏         | 55/3818 [00:21<25:19,  2.48it/s]
  1%|▏         | 56/3818 [00:22<25:19,  2.48it/s]
  1%|▏         | 57/3818 [00:22<25:18,  2.48it/s]
  2%|▏         | 58/3818 [00:22<25:18,  2.48it/s]
  2%|▏         | 59/3818 [00:23<25:19,  2.47it/s]
  2%|▏         | 60/3818 [00:23<25:19,  2.47it/s]
  2%|▏         | 61/3818 [00:24<25:18,  2.47it/s]
  2%|▏         | 62/3818 [00:24<25:21,  2.47it/s]
  2%|▏         | 63/3818 [00:24<25:22,  2.47it/s]
  2%|▏         | 64/3818 [00:25<25:20,  2.47it/s]
  2%|▏         | 65/3818 [00:25<25:21,  2.47it/s]
  2%|▏         | 66/3818 [00:26<25:17,  2.47it/s]
  2%|▏         | 67/3818 [00:26<25:19,  2.47it/s]
  2%|▏         | 68/3818 [00:26<25:18,  2.47it/s]
  2%|▏         | 69/3818 [00:27<25:13,  2.48it/s]
  2%|▏         | 70/3818 [00:27<25:19,  2.47it/s]
  2%|▏         | 71/3818 [00:28<25:20,  2.46it/s]
  2%|▏         | 72/3818 [00:28<25:19,  2.46it/s]
  2%|▏         | 73/3818 [00:28<25:27,  2.45it/s]
  2%|▏         | 74/3818 [00:29<25:23,  2.46it/s]
  2%|▏         | 75/3818 [00:29<25:25,  2.45it/s]
  2%|▏         | 76/3818 [00:30<25:23,  2.46it/s]
  2%|▏         | 77/3818 [00:30<25:18,  2.46it/s]
  2%|▏         | 78/3818 [00:30<25:21,  2.46it/s]
  2%|▏         | 79/3818 [00:31<25:19,  2.46it/s]
  2%|▏         | 80/3818 [00:31<25:24,  2.45it/s]
  2%|▏         | 81/3818 [00:32<25:24,  2.45it/s]
  2%|▏         | 82/3818 [00:32<25:24,  2.45it/s]
  2%|▏         | 83/3818 [00:33<25:24,  2.45it/s]
  2%|▏         | 84/3818 [00:33<25:20,  2.46it/s]
  2%|▏         | 85/3818 [00:33<25:20,  2.45it/s]
  2%|▏         | 86/3818 [00:34<25:24,  2.45it/s]
  2%|▏         | 87/3818 [00:34<25:25,  2.45it/s]
  2%|▏         | 88/3818 [00:35<25:26,  2.44it/s]
  2%|▏         | 89/3818 [00:35<25:26,  2.44it/s]
  2%|▏         | 90/3818 [00:35<25:28,  2.44it/s]
  2%|▏         | 91/3818 [00:36<25:28,  2.44it/s]
  2%|▏         | 92/3818 [00:36<25:26,  2.44it/s]
  2%|▏         | 93/3818 [00:37<25:27,  2.44it/s]
  2%|▏         | 94/3818 [00:37<25:25,  2.44it/s]
  2%|▏         | 95/3818 [00:37<25:28,  2.44it/s]
  3%|β–Ž         | 96/3818 [00:38<25:31,  2.43it/s]
  3%|β–Ž         | 97/3818 [00:38<25:37,  2.42it/s]
  3%|β–Ž         | 98/3818 [00:39<25:35,  2.42it/s]
  3%|β–Ž         | 99/3818 [00:39<25:32,  2.43it/s]
  3%|β–Ž         | 100/3818 [00:40<25:28,  2.43it/s]
  3%|β–Ž         | 101/3818 [00:40<25:33,  2.42it/s]
  3%|β–Ž         | 102/3818 [00:40<25:30,  2.43it/s]
  3%|β–Ž         | 103/3818 [00:41<25:25,  2.44it/s]
  3%|β–Ž         | 104/3818 [00:41<25:26,  2.43it/s]
  3%|β–Ž         | 105/3818 [00:42<25:27,  2.43it/s]
  3%|β–Ž         | 106/3818 [00:42<25:24,  2.44it/s]
  3%|β–Ž         | 107/3818 [00:42<25:30,  2.43it/s]
  3%|β–Ž         | 108/3818 [00:43<25:27,  2.43it/s]
  3%|β–Ž         | 109/3818 [00:43<25:29,  2.43it/s]
  3%|β–Ž         | 110/3818 [00:44<25:29,  2.42it/s]
  3%|β–Ž         | 111/3818 [00:44<25:28,  2.42it/s]
  3%|β–Ž         | 112/3818 [00:44<25:33,  2.42it/s]
  3%|β–Ž         | 113/3818 [00:45<25:30,  2.42it/s]
  3%|β–Ž         | 114/3818 [00:45<25:25,  2.43it/s]
  3%|β–Ž         | 115/3818 [00:46<25:30,  2.42it/s]
  3%|β–Ž         | 116/3818 [00:46<25:30,  2.42it/s]
  3%|β–Ž         | 117/3818 [00:47<25:34,  2.41it/s]
  3%|β–Ž         | 118/3818 [00:47<25:34,  2.41it/s]
  3%|β–Ž         | 119/3818 [00:47<25:33,  2.41it/s]
  3%|β–Ž         | 120/3818 [00:48<25:36,  2.41it/s]
  3%|β–Ž         | 121/3818 [00:48<25:30,  2.42it/s]
  3%|β–Ž         | 122/3818 [00:49<25:31,  2.41it/s]
  3%|β–Ž         | 123/3818 [00:49<25:32,  2.41it/s]
  3%|β–Ž         | 124/3818 [00:49<25:30,  2.41it/s]
  3%|β–Ž         | 125/3818 [00:50<25:32,  2.41it/s]
  3%|β–Ž         | 126/3818 [00:50<25:29,  2.41it/s]
  3%|β–Ž         | 127/3818 [00:51<25:35,  2.40it/s]
  3%|β–Ž         | 128/3818 [00:51<25:33,  2.41it/s]
  3%|β–Ž         | 129/3818 [00:52<25:35,  2.40it/s]
  3%|β–Ž         | 130/3818 [00:52<25:34,  2.40it/s]
  3%|β–Ž         | 131/3818 [00:52<25:36,  2.40it/s]
  3%|β–Ž         | 132/3818 [00:53<25:39,  2.39it/s]
  3%|β–Ž         | 133/3818 [00:53<25:36,  2.40it/s]
  4%|β–Ž         | 134/3818 [00:54<25:42,  2.39it/s]
  4%|β–Ž         | 135/3818 [00:54<25:39,  2.39it/s]
  4%|β–Ž         | 136/3818 [00:54<25:41,  2.39it/s]
  4%|β–Ž         | 137/3818 [00:55<25:39,  2.39it/s]
  4%|β–Ž         | 138/3818 [00:55<25:38,  2.39it/s]
  4%|β–Ž         | 139/3818 [00:56<25:40,  2.39it/s]
  4%|β–Ž         | 140/3818 [00:56<25:39,  2.39it/s]
  4%|β–Ž         | 141/3818 [00:57<25:36,  2.39it/s]
  4%|β–Ž         | 142/3818 [00:57<25:40,  2.39it/s]
  4%|β–Ž         | 143/3818 [00:57<25:42,  2.38it/s]
  4%|▍         | 144/3818 [00:58<25:40,  2.38it/s]
  4%|▍         | 145/3818 [00:58<25:36,  2.39it/s]
  4%|▍         | 146/3818 [00:59<25:37,  2.39it/s]
  4%|▍         | 147/3818 [00:59<25:39,  2.38it/s]
  4%|▍         | 148/3818 [00:59<25:41,  2.38it/s]
  4%|▍         | 149/3818 [01:00<25:40,  2.38it/s]
  4%|▍         | 150/3818 [01:00<25:40,  2.38it/s]
  4%|▍         | 151/3818 [01:01<25:41,  2.38it/s]
  4%|▍         | 152/3818 [01:01<25:42,  2.38it/s]
  4%|▍         | 153/3818 [01:02<25:43,  2.38it/s]
  4%|▍         | 154/3818 [01:02<25:41,  2.38it/s]
  4%|▍         | 155/3818 [01:02<25:42,  2.38it/s]
  4%|▍         | 156/3818 [01:03<25:37,  2.38it/s]
  4%|▍         | 157/3818 [01:03<25:33,  2.39it/s]
  4%|▍         | 158/3818 [01:04<25:29,  2.39it/s]
  4%|▍         | 159/3818 [01:04<25:24,  2.40it/s]
  4%|▍         | 160/3818 [01:04<25:22,  2.40it/s]
  4%|▍         | 161/3818 [01:05<25:20,  2.40it/s]
  4%|▍         | 162/3818 [01:05<25:23,  2.40it/s]
  4%|▍         | 163/3818 [01:06<25:19,  2.41it/s]
  4%|▍         | 164/3818 [01:06<25:23,  2.40it/s]
  4%|▍         | 165/3818 [01:07<25:20,  2.40it/s]
  4%|▍         | 166/3818 [01:07<25:21,  2.40it/s]
  4%|▍         | 167/3818 [01:07<25:23,  2.40it/s]
  4%|▍         | 168/3818 [01:08<25:21,  2.40it/s]
  4%|▍         | 169/3818 [01:08<25:24,  2.39it/s]
  4%|▍         | 170/3818 [01:09<25:22,  2.40it/s]
  4%|▍         | 171/3818 [01:09<25:19,  2.40it/s]
  5%|▍         | 172/3818 [01:09<25:18,  2.40it/s]
  5%|▍         | 173/3818 [01:10<25:16,  2.40it/s]
  5%|▍         | 174/3818 [01:10<25:19,  2.40it/s]
  5%|▍         | 175/3818 [01:11<25:21,  2.39it/s]
  5%|▍         | 176/3818 [01:11<25:16,  2.40it/s]
  5%|▍         | 177/3818 [01:12<25:21,  2.39it/s]
  5%|▍         | 178/3818 [01:12<25:23,  2.39it/s]
  5%|▍         | 179/3818 [01:12<25:22,  2.39it/s]
  5%|▍         | 180/3818 [01:13<25:22,  2.39it/s]
  5%|▍         | 181/3818 [01:13<25:19,  2.39it/s]
  5%|▍         | 182/3818 [01:14<25:21,  2.39it/s]
  5%|▍         | 183/3818 [01:14<25:21,  2.39it/s]
  5%|▍         | 184/3818 [01:15<25:21,  2.39it/s]
  5%|▍         | 185/3818 [01:15<25:25,  2.38it/s]
  5%|▍         | 186/3818 [01:15<25:23,  2.38it/s]
  5%|▍         | 187/3818 [01:16<25:26,  2.38it/s]
  5%|▍         | 188/3818 [01:16<25:25,  2.38it/s]
  5%|▍         | 189/3818 [01:17<25:25,  2.38it/s]
  5%|▍         | 190/3818 [01:17<25:26,  2.38it/s]
  5%|β–Œ         | 191/3818 [01:17<25:22,  2.38it/s]
  5%|β–Œ         | 192/3818 [01:18<25:25,  2.38it/s]
  5%|β–Œ         | 193/3818 [01:18<25:27,  2.37it/s]
  5%|β–Œ         | 194/3818 [01:19<25:26,  2.37it/s]
  5%|β–Œ         | 195/3818 [01:19<25:29,  2.37it/s]
  5%|β–Œ         | 196/3818 [01:20<25:27,  2.37it/s]
  5%|β–Œ         | 197/3818 [01:20<25:26,  2.37it/s]
  5%|β–Œ         | 198/3818 [01:20<25:24,  2.37it/s]
  5%|β–Œ         | 199/3818 [01:21<25:26,  2.37it/s]
  5%|β–Œ         | 200/3818 [01:21<25:28,  2.37it/s]
  5%|β–Œ         | 201/3818 [01:22<25:31,  2.36it/s]
  5%|β–Œ         | 202/3818 [01:22<25:30,  2.36it/s]
  5%|β–Œ         | 203/3818 [01:23<25:30,  2.36it/s]
  5%|β–Œ         | 204/3818 [01:23<25:31,  2.36it/s]
  5%|β–Œ         | 205/3818 [01:23<25:31,  2.36it/s]
  5%|β–Œ         | 206/3818 [01:24<25:28,  2.36it/s]
  5%|β–Œ         | 207/3818 [01:24<25:30,  2.36it/s]
  5%|β–Œ         | 208/3818 [01:25<25:28,  2.36it/s]
  5%|β–Œ         | 209/3818 [01:25<25:29,  2.36it/s]
  6%|β–Œ         | 210/3818 [01:25<25:28,  2.36it/s]
  6%|β–Œ         | 211/3818 [01:26<25:29,  2.36it/s]
  6%|β–Œ         | 212/3818 [01:26<25:29,  2.36it/s]
  6%|β–Œ         | 213/3818 [01:27<25:29,  2.36it/s]
  6%|β–Œ         | 214/3818 [01:27<25:26,  2.36it/s]
  6%|β–Œ         | 215/3818 [01:28<25:26,  2.36it/s]
  6%|β–Œ         | 216/3818 [01:28<25:25,  2.36it/s]
  6%|β–Œ         | 217/3818 [01:28<25:26,  2.36it/s]
  6%|β–Œ         | 218/3818 [01:29<25:24,  2.36it/s]
  6%|β–Œ         | 219/3818 [01:29<25:23,  2.36it/s]
  6%|β–Œ         | 220/3818 [01:30<25:24,  2.36it/s]
  6%|β–Œ         | 221/3818 [01:30<25:25,  2.36it/s]
  6%|β–Œ         | 222/3818 [01:31<25:27,  2.35it/s]
  6%|β–Œ         | 223/3818 [01:31<25:23,  2.36it/s]
  6%|β–Œ         | 224/3818 [01:31<25:26,  2.35it/s]
  6%|β–Œ         | 225/3818 [01:32<25:24,  2.36it/s]
  6%|β–Œ         | 226/3818 [01:32<25:21,  2.36it/s]
  6%|β–Œ         | 227/3818 [01:33<25:24,  2.36it/s]
  6%|β–Œ         | 228/3818 [01:33<25:21,  2.36it/s]
  6%|β–Œ         | 229/3818 [01:34<25:24,  2.35it/s]
  6%|β–Œ         | 230/3818 [01:34<25:22,  2.36it/s]
  6%|β–Œ         | 231/3818 [01:34<25:24,  2.35it/s]
  6%|β–Œ         | 232/3818 [01:35<25:22,  2.36it/s]
  6%|β–Œ         | 233/3818 [01:35<25:21,  2.36it/s]
  6%|β–Œ         | 234/3818 [01:36<25:25,  2.35it/s]
  6%|β–Œ         | 235/3818 [01:36<25:24,  2.35it/s]
  6%|β–Œ         | 236/3818 [01:37<25:27,  2.34it/s]
  6%|β–Œ         | 237/3818 [01:37<25:28,  2.34it/s]
  6%|β–Œ         | 238/3818 [01:37<25:26,  2.35it/s]
  6%|β–‹         | 239/3818 [01:38<25:29,  2.34it/s]
  6%|β–‹         | 240/3818 [01:38<25:26,  2.34it/s]
  6%|β–‹         | 241/3818 [01:39<25:29,  2.34it/s]
  6%|β–‹         | 242/3818 [01:39<25:28,  2.34it/s]
  6%|β–‹         | 243/3818 [01:40<25:26,  2.34it/s]
  6%|β–‹         | 244/3818 [01:40<25:26,  2.34it/s]
  6%|β–‹         | 245/3818 [01:40<25:26,  2.34it/s]
  6%|β–‹         | 246/3818 [01:41<25:27,  2.34it/s]
  6%|β–‹         | 247/3818 [01:41<25:29,  2.34it/s]
  6%|β–‹         | 248/3818 [01:42<25:29,  2.33it/s]
  7%|β–‹         | 249/3818 [01:42<25:32,  2.33it/s]
  7%|β–‹         | 250/3818 [01:43<25:32,  2.33it/s]
  7%|β–‹         | 251/3818 [01:43<25:33,  2.33it/s]
  7%|β–‹         | 252/3818 [01:43<25:36,  2.32it/s]
  7%|β–‹         | 253/3818 [01:44<25:34,  2.32it/s]
  7%|β–‹         | 254/3818 [01:44<25:33,  2.32it/s]
  7%|β–‹         | 255/3818 [01:45<25:31,  2.33it/s]
  7%|β–‹         | 256/3818 [01:45<25:30,  2.33it/s]
  7%|β–‹         | 257/3818 [01:46<25:32,  2.32it/s]
  7%|β–‹         | 258/3818 [01:46<25:33,  2.32it/s]
  7%|β–‹         | 259/3818 [01:46<25:34,  2.32it/s]
  7%|β–‹         | 260/3818 [01:47<25:33,  2.32it/s]
  7%|β–‹         | 261/3818 [01:47<25:31,  2.32it/s]
  7%|β–‹         | 262/3818 [01:48<25:30,  2.32it/s]
  7%|β–‹         | 263/3818 [01:48<25:32,  2.32it/s]
  7%|β–‹         | 264/3818 [01:49<25:31,  2.32it/s]
  7%|β–‹         | 265/3818 [01:49<25:34,  2.32it/s]
  7%|β–‹         | 266/3818 [01:49<25:32,  2.32it/s]
  7%|β–‹         | 267/3818 [01:50<25:31,  2.32it/s]
  7%|β–‹         | 268/3818 [01:50<25:35,  2.31it/s]
  7%|β–‹         | 269/3818 [01:51<25:30,  2.32it/s]
  7%|β–‹         | 270/3818 [01:51<25:33,  2.31it/s]
  7%|β–‹         | 271/3818 [01:52<25:33,  2.31it/s]
  7%|β–‹         | 272/3818 [01:52<25:33,  2.31it/s]
  7%|β–‹         | 273/3818 [01:52<25:33,  2.31it/s]
  7%|β–‹         | 274/3818 [01:53<25:31,  2.31it/s]
  7%|β–‹         | 275/3818 [01:53<25:35,  2.31it/s]
  7%|β–‹         | 276/3818 [01:54<25:33,  2.31it/s]
  7%|β–‹         | 277/3818 [01:54<25:34,  2.31it/s]
  7%|β–‹         | 278/3818 [01:55<25:33,  2.31it/s]
  7%|β–‹         | 279/3818 [01:55<25:30,  2.31it/s]
  7%|β–‹         | 280/3818 [01:55<25:31,  2.31it/s]
  7%|β–‹         | 281/3818 [01:56<25:28,  2.31it/s]
  7%|β–‹         | 282/3818 [01:56<25:33,  2.31it/s]
  7%|β–‹         | 283/3818 [01:57<25:31,  2.31it/s]
  7%|β–‹         | 284/3818 [01:57<25:33,  2.30it/s]
  7%|β–‹         | 285/3818 [01:58<25:31,  2.31it/s]
  7%|β–‹         | 286/3818 [01:58<25:30,  2.31it/s]
  8%|β–Š         | 287/3818 [01:59<25:32,  2.30it/s]
  8%|β–Š         | 288/3818 [01:59<25:32,  2.30it/s]
  8%|β–Š         | 289/3818 [01:59<25:31,  2.30it/s]
  8%|β–Š         | 290/3818 [02:00<25:29,  2.31it/s]
  8%|β–Š         | 291/3818 [02:00<25:30,  2.31it/s]
  8%|β–Š         | 292/3818 [02:01<25:28,  2.31it/s]
  8%|β–Š         | 293/3818 [02:01<25:26,  2.31it/s]
  8%|β–Š         | 294/3818 [02:02<25:26,  2.31it/s]
  8%|β–Š         | 295/3818 [02:02<25:24,  2.31it/s]
  8%|β–Š         | 296/3818 [02:02<25:28,  2.30it/s]
  8%|β–Š         | 297/3818 [02:03<25:28,  2.30it/s]
  8%|β–Š         | 298/3818 [02:03<25:26,  2.31it/s]
  8%|β–Š         | 299/3818 [02:04<25:24,  2.31it/s]
  8%|β–Š         | 300/3818 [02:04<25:28,  2.30it/s]
  8%|β–Š         | 301/3818 [02:05<25:29,  2.30it/s]
  8%|β–Š         | 302/3818 [02:05<25:29,  2.30it/s]
  8%|β–Š         | 303/3818 [02:05<25:30,  2.30it/s]
  8%|β–Š         | 304/3818 [02:06<25:33,  2.29it/s]
  8%|β–Š         | 305/3818 [02:06<25:31,  2.29it/s]
  8%|β–Š         | 306/3818 [02:07<25:32,  2.29it/s]
  8%|β–Š         | 307/3818 [02:07<25:33,  2.29it/s]
  8%|β–Š         | 308/3818 [02:08<25:30,  2.29it/s]
  8%|β–Š         | 309/3818 [02:08<25:33,  2.29it/s]
  8%|β–Š         | 310/3818 [02:09<25:33,  2.29it/s]
  8%|β–Š         | 311/3818 [02:09<25:30,  2.29it/s]
  8%|β–Š         | 312/3818 [02:09<25:32,  2.29it/s]
  8%|β–Š         | 313/3818 [02:10<25:30,  2.29it/s]
  8%|β–Š         | 314/3818 [02:10<25:30,  2.29it/s]
  8%|β–Š         | 315/3818 [02:11<25:30,  2.29it/s]
  8%|β–Š         | 316/3818 [02:11<25:27,  2.29it/s]
  8%|β–Š         | 317/3818 [02:12<25:32,  2.28it/s]
  8%|β–Š         | 318/3818 [02:12<25:31,  2.29it/s]
  8%|β–Š         | 319/3818 [02:12<25:29,  2.29it/s]
  8%|β–Š         | 320/3818 [02:13<25:30,  2.28it/s]
  8%|β–Š         | 321/3818 [02:13<25:30,  2.28it/s]
  8%|β–Š         | 322/3818 [02:14<25:23,  2.29it/s]
  8%|β–Š         | 323/3818 [02:14<25:25,  2.29it/s]
  8%|β–Š         | 324/3818 [02:15<25:29,  2.28it/s]
  9%|β–Š         | 325/3818 [02:15<25:27,  2.29it/s]
  9%|β–Š         | 326/3818 [02:16<25:38,  2.27it/s]
  9%|β–Š         | 327/3818 [02:16<25:31,  2.28it/s]
  9%|β–Š         | 328/3818 [02:16<25:32,  2.28it/s]
  9%|β–Š         | 329/3818 [02:17<25:27,  2.28it/s]
  9%|β–Š         | 330/3818 [02:17<25:31,  2.28it/s]
  9%|β–Š         | 331/3818 [02:18<25:33,  2.27it/s]
  9%|β–Š         | 332/3818 [02:18<25:30,  2.28it/s]
  9%|β–Š         | 333/3818 [02:19<25:31,  2.28it/s]
  9%|β–Š         | 334/3818 [02:19<25:28,  2.28it/s]
  9%|β–‰         | 335/3818 [02:19<25:32,  2.27it/s]
  9%|β–‰         | 336/3818 [02:20<25:31,  2.27it/s]
  9%|β–‰         | 337/3818 [02:20<25:29,  2.28it/s]
  9%|β–‰         | 338/3818 [02:21<25:28,  2.28it/s]
  9%|β–‰         | 339/3818 [02:21<25:27,  2.28it/s]
  9%|β–‰         | 340/3818 [02:22<25:29,  2.27it/s]
  9%|β–‰         | 341/3818 [02:22<25:28,  2.28it/s]
  9%|β–‰         | 342/3818 [02:23<25:30,  2.27it/s]
  9%|β–‰         | 343/3818 [02:23<25:27,  2.28it/s]
  9%|β–‰         | 344/3818 [02:23<25:31,  2.27it/s]
  9%|β–‰         | 345/3818 [02:24<25:30,  2.27it/s]
  9%|β–‰         | 346/3818 [02:24<25:29,  2.27it/s]
  9%|β–‰         | 347/3818 [02:25<25:31,  2.27it/s]
  9%|β–‰         | 348/3818 [02:25<25:29,  2.27it/s]
  9%|β–‰         | 349/3818 [02:26<25:32,  2.26it/s]
  9%|β–‰         | 350/3818 [02:26<25:31,  2.26it/s]
  9%|β–‰         | 351/3818 [02:27<25:29,  2.27it/s]
  9%|β–‰         | 352/3818 [02:27<25:30,  2.26it/s]
  9%|β–‰         | 353/3818 [02:27<25:29,  2.27it/s]
  9%|β–‰         | 354/3818 [02:28<25:29,  2.26it/s]
  9%|β–‰         | 355/3818 [02:28<25:28,  2.27it/s]
  9%|β–‰         | 356/3818 [02:29<25:26,  2.27it/s]
  9%|β–‰         | 357/3818 [02:29<25:26,  2.27it/s]
  9%|β–‰         | 358/3818 [02:30<25:24,  2.27it/s]
  9%|β–‰         | 359/3818 [02:30<25:25,  2.27it/s]
  9%|β–‰         | 360/3818 [02:30<25:25,  2.27it/s]
  9%|β–‰         | 361/3818 [02:31<25:26,  2.26it/s]
  9%|β–‰         | 362/3818 [02:31<25:23,  2.27it/s]
 10%|β–‰         | 363/3818 [02:32<25:26,  2.26it/s]
 10%|β–‰         | 364/3818 [02:32<25:29,  2.26it/s]
 10%|β–‰         | 365/3818 [02:33<25:28,  2.26it/s]
 10%|β–‰         | 366/3818 [02:33<25:27,  2.26it/s]
 10%|β–‰         | 367/3818 [02:34<25:25,  2.26it/s]
 10%|β–‰         | 368/3818 [02:34<25:25,  2.26it/s]
 10%|β–‰         | 369/3818 [02:34<25:26,  2.26it/s]
 10%|β–‰         | 370/3818 [02:35<25:24,  2.26it/s]
 10%|β–‰         | 371/3818 [02:35<25:25,  2.26it/s]
 10%|β–‰         | 372/3818 [02:36<25:23,  2.26it/s]
 10%|β–‰         | 373/3818 [02:36<25:26,  2.26it/s]
 10%|β–‰         | 374/3818 [02:37<25:25,  2.26it/s]
 10%|β–‰         | 375/3818 [02:37<25:24,  2.26it/s]
 10%|β–‰         | 376/3818 [02:38<25:26,  2.25it/s]
 10%|β–‰         | 377/3818 [02:38<25:26,  2.25it/s]
 10%|β–‰         | 378/3818 [02:38<25:25,  2.25it/s]
 10%|β–‰         | 379/3818 [02:39<25:23,  2.26it/s]
 10%|β–‰         | 380/3818 [02:39<25:26,  2.25it/s]
 10%|β–‰         | 381/3818 [02:40<25:26,  2.25it/s]
 10%|β–ˆ         | 382/3818 [02:40<25:23,  2.26it/s]
 10%|β–ˆ         | 383/3818 [02:41<25:27,  2.25it/s]
 10%|β–ˆ         | 384/3818 [02:41<25:29,  2.25it/s]
 10%|β–ˆ         | 385/3818 [02:42<25:29,  2.24it/s]
 10%|β–ˆ         | 386/3818 [02:42<25:25,  2.25it/s]
 10%|β–ˆ         | 387/3818 [02:42<25:27,  2.25it/s]
 10%|β–ˆ         | 388/3818 [02:43<25:26,  2.25it/s]
 10%|β–ˆ         | 389/3818 [02:43<25:23,  2.25it/s]
 10%|β–ˆ         | 390/3818 [02:44<25:21,  2.25it/s]
 10%|β–ˆ         | 391/3818 [02:44<25:21,  2.25it/s]
 10%|β–ˆ         | 392/3818 [02:45<25:21,  2.25it/s]
 10%|β–ˆ         | 393/3818 [02:45<25:17,  2.26it/s]
 10%|β–ˆ         | 394/3818 [02:46<25:24,  2.25it/s]
 10%|β–ˆ         | 395/3818 [02:46<25:22,  2.25it/s]
 10%|β–ˆ         | 396/3818 [02:46<25:22,  2.25it/s]
 10%|β–ˆ         | 397/3818 [02:47<25:19,  2.25it/s]
 10%|β–ˆ         | 398/3818 [02:47<25:20,  2.25it/s]
 10%|β–ˆ         | 399/3818 [02:48<25:17,  2.25it/s]
 10%|β–ˆ         | 400/3818 [02:48<25:20,  2.25it/s]
 11%|β–ˆ         | 401/3818 [02:49<25:21,  2.25it/s]
 11%|β–ˆ         | 402/3818 [02:49<25:18,  2.25it/s]
 11%|β–ˆ         | 403/3818 [02:50<25:19,  2.25it/s]
 11%|β–ˆ         | 404/3818 [02:50<25:14,  2.25it/s]
 11%|β–ˆ         | 405/3818 [02:50<25:18,  2.25it/s]
 11%|β–ˆ         | 406/3818 [02:51<25:17,  2.25it/s]
 11%|β–ˆ         | 407/3818 [02:51<25:19,  2.24it/s]
 11%|β–ˆ         | 408/3818 [02:52<25:19,  2.24it/s]
 11%|β–ˆ         | 409/3818 [02:52<25:18,  2.24it/s]
 11%|β–ˆ         | 410/3818 [02:53<25:17,  2.25it/s]
 11%|β–ˆ         | 411/3818 [02:53<25:19,  2.24it/s]
 11%|β–ˆ         | 412/3818 [02:54<25:21,  2.24it/s]
 11%|β–ˆ         | 413/3818 [02:54<25:19,  2.24it/s]
 11%|β–ˆ         | 414/3818 [02:54<25:21,  2.24it/s]
 11%|β–ˆ         | 415/3818 [02:55<25:20,  2.24it/s]
 11%|β–ˆ         | 416/3818 [02:55<25:19,  2.24it/s]
 11%|β–ˆ         | 417/3818 [02:56<25:21,  2.24it/s]
 11%|β–ˆ         | 418/3818 [02:56<25:20,  2.24it/s]
 11%|β–ˆ         | 419/3818 [02:57<25:16,  2.24it/s]
 11%|β–ˆ         | 420/3818 [02:57<25:16,  2.24it/s]
 11%|β–ˆ         | 421/3818 [02:58<25:18,  2.24it/s]
 11%|β–ˆ         | 422/3818 [02:58<25:18,  2.24it/s]
 11%|β–ˆ         | 423/3818 [02:59<25:20,  2.23it/s]
 11%|β–ˆ         | 424/3818 [02:59<25:22,  2.23it/s]
 11%|β–ˆ         | 425/3818 [02:59<25:18,  2.23it/s]
 11%|β–ˆ         | 426/3818 [03:00<25:17,  2.23it/s]
 11%|β–ˆ         | 427/3818 [03:00<25:16,  2.24it/s]
 11%|β–ˆ         | 428/3818 [03:01<25:05,  2.25it/s]
 11%|β–ˆ         | 429/3818 [03:01<25:03,  2.25it/s]
 11%|β–ˆβ–        | 430/3818 [03:02<24:59,  2.26it/s]
 11%|β–ˆβ–        | 431/3818 [03:02<25:00,  2.26it/s]
 11%|β–ˆβ–        | 432/3818 [03:02<24:56,  2.26it/s]
 11%|β–ˆβ–        | 433/3818 [03:03<24:55,  2.26it/s]
 11%|β–ˆβ–        | 434/3818 [03:03<24:52,  2.27it/s]
 11%|β–ˆβ–        | 435/3818 [03:04<24:51,  2.27it/s]
 11%|β–ˆβ–        | 436/3818 [03:04<24:49,  2.27it/s]
 11%|β–ˆβ–        | 437/3818 [03:05<24:48,  2.27it/s]
 11%|β–ˆβ–        | 438/3818 [03:05<24:48,  2.27it/s]
 11%|β–ˆβ–        | 439/3818 [03:06<24:50,  2.27it/s]
 12%|β–ˆβ–        | 440/3818 [03:06<24:47,  2.27it/s]
 12%|β–ˆβ–        | 441/3818 [03:06<24:44,  2.28it/s]
 12%|β–ˆβ–        | 442/3818 [03:07<24:42,  2.28it/s]
 12%|β–ˆβ–        | 443/3818 [03:07<24:47,  2.27it/s]
 12%|β–ˆβ–        | 444/3818 [03:08<24:47,  2.27it/s]
 12%|β–ˆβ–        | 445/3818 [03:08<24:47,  2.27it/s]
 12%|β–ˆβ–        | 446/3818 [03:09<24:45,  2.27it/s]
 12%|β–ˆβ–        | 447/3818 [03:09<24:47,  2.27it/s]
 12%|β–ˆβ–        | 448/3818 [03:10<24:47,  2.27it/s]
 12%|β–ˆβ–        | 449/3818 [03:10<24:45,  2.27it/s]
 12%|β–ˆβ–        | 450/3818 [03:10<24:45,  2.27it/s]
 12%|β–ˆβ–        | 451/3818 [03:11<24:46,  2.27it/s]
 12%|β–ˆβ–        | 452/3818 [03:11<24:46,  2.26it/s]
 12%|β–ˆβ–        | 453/3818 [03:12<24:48,  2.26it/s]
 12%|β–ˆβ–        | 454/3818 [03:12<24:48,  2.26it/s]
 12%|β–ˆβ–        | 455/3818 [03:13<24:45,  2.26it/s]
 12%|β–ˆβ–        | 456/3818 [03:13<24:45,  2.26it/s]
 12%|β–ˆβ–        | 457/3818 [03:14<24:49,  2.26it/s]
 12%|β–ˆβ–        | 458/3818 [03:14<24:46,  2.26it/s]
 12%|β–ˆβ–        | 459/3818 [03:14<24:45,  2.26it/s]
 12%|β–ˆβ–        | 460/3818 [03:15<24:43,  2.26it/s]
 12%|β–ˆβ–        | 461/3818 [03:15<24:44,  2.26it/s]
 12%|β–ˆβ–        | 462/3818 [03:16<24:44,  2.26it/s]
 12%|β–ˆβ–        | 463/3818 [03:16<24:45,  2.26it/s]
 12%|β–ˆβ–        | 464/3818 [03:17<24:44,  2.26it/s]
 12%|β–ˆβ–        | 465/3818 [03:17<24:42,  2.26it/s]
 12%|β–ˆβ–        | 466/3818 [03:18<24:43,  2.26it/s]
 12%|β–ˆβ–        | 467/3818 [03:18<24:45,  2.26it/s]
 12%|β–ˆβ–        | 468/3818 [03:18<24:44,  2.26it/s]
 12%|β–ˆβ–        | 469/3818 [03:19<24:45,  2.25it/s]
 12%|β–ˆβ–        | 470/3818 [03:19<24:41,  2.26it/s]
 12%|β–ˆβ–        | 471/3818 [03:20<24:42,  2.26it/s]
 12%|β–ˆβ–        | 472/3818 [03:20<24:42,  2.26it/s]
 12%|β–ˆβ–        | 473/3818 [03:21<24:43,  2.26it/s]
 12%|β–ˆβ–        | 474/3818 [03:21<24:44,  2.25it/s]
 12%|β–ˆβ–        | 475/3818 [03:21<24:41,  2.26it/s]
 12%|β–ˆβ–        | 476/3818 [03:22<24:42,  2.25it/s]
 12%|β–ˆβ–        | 477/3818 [03:22<24:46,  2.25it/s]
 13%|β–ˆβ–Ž        | 478/3818 [03:23<24:45,  2.25it/s]
 13%|β–ˆβ–Ž        | 479/3818 [03:23<24:44,  2.25it/s]
 13%|β–ˆβ–Ž        | 480/3818 [03:24<24:42,  2.25it/s]
 13%|β–ˆβ–Ž        | 481/3818 [03:24<24:41,  2.25it/s]
 13%|β–ˆβ–Ž        | 482/3818 [03:25<24:40,  2.25it/s]
 13%|β–ˆβ–Ž        | 483/3818 [03:25<24:40,  2.25it/s]
 13%|β–ˆβ–Ž        | 484/3818 [03:25<24:40,  2.25it/s]
 13%|β–ˆβ–Ž        | 485/3818 [03:26<24:38,  2.25it/s]
 13%|β–ˆβ–Ž        | 486/3818 [03:26<24:37,  2.26it/s]
 13%|β–ˆβ–Ž        | 487/3818 [03:27<24:38,  2.25it/s]
 13%|β–ˆβ–Ž        | 488/3818 [03:27<24:36,  2.26it/s]
 13%|β–ˆβ–Ž        | 489/3818 [03:28<24:38,  2.25it/s]
 13%|β–ˆβ–Ž        | 490/3818 [03:28<24:37,  2.25it/s]
 13%|β–ˆβ–Ž        | 491/3818 [03:29<24:39,  2.25it/s]
 13%|β–ˆβ–Ž        | 492/3818 [03:29<24:36,  2.25it/s]
 13%|β–ˆβ–Ž        | 493/3818 [03:29<24:39,  2.25it/s]
 13%|β–ˆβ–Ž        | 494/3818 [03:30<24:35,  2.25it/s]
 13%|β–ˆβ–Ž        | 495/3818 [03:30<24:35,  2.25it/s]
 13%|β–ˆβ–Ž        | 496/3818 [03:31<24:35,  2.25it/s]
 13%|β–ˆβ–Ž        | 497/3818 [03:31<24:34,  2.25it/s]
 13%|β–ˆβ–Ž        | 498/3818 [03:32<24:37,  2.25it/s]
 13%|β–ˆβ–Ž        | 499/3818 [03:32<24:34,  2.25it/s]
 13%|β–ˆβ–Ž        | 500/3818 [03:33<24:38,  2.24it/s]
 13%|β–ˆβ–Ž        | 501/3818 [03:33<24:38,  2.24it/s]
 13%|β–ˆβ–Ž        | 502/3818 [03:33<24:38,  2.24it/s]
 13%|β–ˆβ–Ž        | 503/3818 [03:34<24:39,  2.24it/s]
 13%|β–ˆβ–Ž        | 504/3818 [03:34<24:36,  2.24it/s]
 13%|β–ˆβ–Ž        | 505/3818 [03:35<24:36,  2.24it/s]
 13%|β–ˆβ–Ž        | 506/3818 [03:35<24:36,  2.24it/s]
 13%|β–ˆβ–Ž        | 507/3818 [03:36<24:35,  2.24it/s]
 13%|β–ˆβ–Ž        | 508/3818 [03:36<24:33,  2.25it/s]
 13%|β–ˆβ–Ž        | 509/3818 [03:37<24:34,  2.24it/s]
 13%|β–ˆβ–Ž        | 510/3818 [03:37<24:32,  2.25it/s]
 13%|β–ˆβ–Ž        | 511/3818 [03:38<24:32,  2.25it/s]
 13%|β–ˆβ–Ž        | 512/3818 [03:38<24:33,  2.24it/s]
 13%|β–ˆβ–Ž        | 513/3818 [03:38<24:31,  2.25it/s]
 13%|β–ˆβ–Ž        | 514/3818 [03:39<24:29,  2.25it/s]
 13%|β–ˆβ–Ž        | 515/3818 [03:39<24:28,  2.25it/s]
 14%|β–ˆβ–Ž        | 516/3818 [03:40<24:31,  2.24it/s]
 14%|β–ˆβ–Ž        | 517/3818 [03:40<24:30,  2.25it/s]
 14%|β–ˆβ–Ž        | 518/3818 [03:41<24:28,  2.25it/s]
 14%|β–ˆβ–Ž        | 519/3818 [03:41<24:23,  2.25it/s]
 14%|β–ˆβ–Ž        | 520/3818 [03:42<24:27,  2.25it/s]
 14%|β–ˆβ–Ž        | 521/3818 [03:42<24:28,  2.25it/s]
 14%|β–ˆβ–Ž        | 522/3818 [03:42<24:28,  2.24it/s]
 14%|β–ˆβ–Ž        | 523/3818 [03:43<24:29,  2.24it/s]
 14%|β–ˆβ–Ž        | 524/3818 [03:43<24:28,  2.24it/s]
 14%|β–ˆβ–        | 525/3818 [03:44<24:26,  2.25it/s]
 14%|β–ˆβ–        | 526/3818 [03:44<24:27,  2.24it/s]
 14%|β–ˆβ–        | 527/3818 [03:45<24:26,  2.24it/s]
 14%|β–ˆβ–        | 528/3818 [03:45<24:26,  2.24it/s]
 14%|β–ˆβ–        | 529/3818 [03:46<24:28,  2.24it/s]
 14%|β–ˆβ–        | 530/3818 [03:46<24:27,  2.24it/s]
 14%|β–ˆβ–        | 531/3818 [03:46<24:27,  2.24it/s]
 14%|β–ˆβ–        | 532/3818 [03:47<24:23,  2.25it/s]
 14%|β–ˆβ–        | 533/3818 [03:47<24:25,  2.24it/s]
 14%|β–ˆβ–        | 534/3818 [03:48<24:26,  2.24it/s]
 14%|β–ˆβ–        | 535/3818 [03:48<24:23,  2.24it/s]
 14%|β–ˆβ–        | 536/3818 [03:49<24:26,  2.24it/s]
 14%|β–ˆβ–        | 537/3818 [03:49<24:24,  2.24it/s]
 14%|β–ˆβ–        | 538/3818 [03:50<24:23,  2.24it/s]
 14%|β–ˆβ–        | 539/3818 [03:50<24:23,  2.24it/s]
 14%|β–ˆβ–        | 540/3818 [03:50<24:26,  2.24it/s]
 14%|β–ˆβ–        | 541/3818 [03:51<24:22,  2.24it/s]
 14%|β–ˆβ–        | 542/3818 [03:51<24:21,  2.24it/s]
 14%|β–ˆβ–        | 543/3818 [03:52<24:21,  2.24it/s]
 14%|β–ˆβ–        | 544/3818 [03:52<24:21,  2.24it/s]
 14%|β–ˆβ–        | 545/3818 [03:53<24:22,  2.24it/s]
 14%|β–ˆβ–        | 546/3818 [03:53<24:21,  2.24it/s]
 14%|β–ˆβ–        | 547/3818 [03:54<24:22,  2.24it/s]
 14%|β–ˆβ–        | 548/3818 [03:54<24:21,  2.24it/s]
 14%|β–ˆβ–        | 549/3818 [03:54<24:21,  2.24it/s]
 14%|β–ˆβ–        | 550/3818 [03:55<24:19,  2.24it/s]
 14%|β–ˆβ–        | 551/3818 [03:55<24:22,  2.23it/s]
 14%|β–ˆβ–        | 552/3818 [03:56<24:22,  2.23it/s]
 14%|β–ˆβ–        | 553/3818 [03:56<24:21,  2.23it/s]
 15%|β–ˆβ–        | 554/3818 [03:57<24:23,  2.23it/s]
 15%|β–ˆβ–        | 555/3818 [03:57<24:23,  2.23it/s]
 15%|β–ˆβ–        | 556/3818 [03:58<24:20,  2.23it/s]
 15%|β–ˆβ–        | 557/3818 [03:58<24:23,  2.23it/s]
 15%|β–ˆβ–        | 558/3818 [03:58<24:23,  2.23it/s]
 15%|β–ˆβ–        | 559/3818 [03:59<24:23,  2.23it/s]
 15%|β–ˆβ–        | 560/3818 [03:59<24:20,  2.23it/s]
 15%|β–ˆβ–        | 561/3818 [04:00<24:20,  2.23it/s]
 15%|β–ˆβ–        | 562/3818 [04:00<24:23,  2.22it/s]
 15%|β–ˆβ–        | 563/3818 [04:01<24:20,  2.23it/s]
 15%|β–ˆβ–        | 564/3818 [04:01<24:24,  2.22it/s]
 15%|β–ˆβ–        | 565/3818 [04:02<24:18,  2.23it/s]
 15%|β–ˆβ–        | 566/3818 [04:02<24:21,  2.23it/s]
 15%|β–ˆβ–        | 567/3818 [04:03<24:21,  2.22it/s]
 15%|β–ˆβ–        | 568/3818 [04:03<24:22,  2.22it/s]
 15%|β–ˆβ–        | 569/3818 [04:03<24:22,  2.22it/s]
 15%|β–ˆβ–        | 570/3818 [04:04<24:20,  2.22it/s]
 15%|β–ˆβ–        | 571/3818 [04:04<24:22,  2.22it/s]
 15%|β–ˆβ–        | 572/3818 [04:05<24:18,  2.23it/s]
 15%|β–ˆβ–Œ        | 573/3818 [04:05<24:17,  2.23it/s]
 15%|β–ˆβ–Œ        | 574/3818 [04:06<24:16,  2.23it/s]
 15%|β–ˆβ–Œ        | 575/3818 [04:06<24:14,  2.23it/s]
 15%|β–ˆβ–Œ        | 576/3818 [04:07<24:18,  2.22it/s]
 15%|β–ˆβ–Œ        | 577/3818 [04:07<24:16,  2.23it/s]
 15%|β–ˆβ–Œ        | 578/3818 [04:07<24:17,  2.22it/s]
 15%|β–ˆβ–Œ        | 579/3818 [04:08<24:16,  2.22it/s]
 15%|β–ˆβ–Œ        | 580/3818 [04:08<24:14,  2.23it/s]
 15%|β–ˆβ–Œ        | 581/3818 [04:09<24:10,  2.23it/s]
 15%|β–ˆβ–Œ        | 582/3818 [04:09<24:10,  2.23it/s]
 15%|β–ˆβ–Œ        | 583/3818 [04:10<24:09,  2.23it/s]
 15%|β–ˆβ–Œ        | 584/3818 [04:10<24:10,  2.23it/s]
 15%|β–ˆβ–Œ        | 585/3818 [04:11<24:14,  2.22it/s]
 15%|β–ˆβ–Œ        | 586/3818 [04:11<24:13,  2.22it/s]
 15%|β–ˆβ–Œ        | 587/3818 [04:12<24:10,  2.23it/s]
 15%|β–ˆβ–Œ        | 588/3818 [04:12<24:10,  2.23it/s]
 15%|β–ˆβ–Œ        | 589/3818 [04:12<24:12,  2.22it/s]
 15%|β–ˆβ–Œ        | 590/3818 [04:13<24:11,  2.22it/s]
 15%|β–ˆβ–Œ        | 591/3818 [04:13<24:12,  2.22it/s]
 16%|β–ˆβ–Œ        | 592/3818 [04:14<24:08,  2.23it/s]
 16%|β–ˆβ–Œ        | 593/3818 [04:14<24:08,  2.23it/s]
 16%|β–ˆβ–Œ        | 594/3818 [04:15<24:09,  2.22it/s]
 16%|β–ˆβ–Œ        | 595/3818 [04:15<24:12,  2.22it/s]
 16%|β–ˆβ–Œ        | 596/3818 [04:16<24:07,  2.23it/s]
 16%|β–ˆβ–Œ        | 597/3818 [04:16<24:04,  2.23it/s]
 16%|β–ˆβ–Œ        | 598/3818 [04:16<24:06,  2.23it/s]
 16%|β–ˆβ–Œ        | 599/3818 [04:17<24:06,  2.23it/s]
 16%|β–ˆβ–Œ        | 600/3818 [04:17<24:05,  2.23it/s]
 16%|β–ˆβ–Œ        | 601/3818 [04:18<24:04,  2.23it/s]
 16%|β–ˆβ–Œ        | 602/3818 [04:18<24:04,  2.23it/s]
 16%|β–ˆβ–Œ        | 603/3818 [04:19<24:05,  2.22it/s]
 16%|β–ˆβ–Œ        | 604/3818 [04:19<24:11,  2.21it/s]
 16%|β–ˆβ–Œ        | 605/3818 [04:20<24:09,  2.22it/s]
 16%|β–ˆβ–Œ        | 606/3818 [04:20<24:10,  2.21it/s]
 16%|β–ˆβ–Œ        | 607/3818 [04:21<24:08,  2.22it/s]
 16%|β–ˆβ–Œ        | 608/3818 [04:21<24:08,  2.22it/s]
 16%|β–ˆβ–Œ        | 609/3818 [04:21<24:05,  2.22it/s]
 16%|β–ˆβ–Œ        | 610/3818 [04:22<24:02,  2.22it/s]
 16%|β–ˆβ–Œ        | 611/3818 [04:22<24:01,  2.22it/s]
 16%|β–ˆβ–Œ        | 612/3818 [04:23<24:04,  2.22it/s]
 16%|β–ˆβ–Œ        | 613/3818 [04:23<24:04,  2.22it/s]
 16%|β–ˆβ–Œ        | 614/3818 [04:24<24:04,  2.22it/s]
 16%|β–ˆβ–Œ        | 615/3818 [04:24<24:05,  2.22it/s]
 16%|β–ˆβ–Œ        | 616/3818 [04:25<24:00,  2.22it/s]
 16%|β–ˆβ–Œ        | 617/3818 [04:25<24:04,  2.22it/s]
 16%|β–ˆβ–Œ        | 618/3818 [04:25<24:06,  2.21it/s]
 16%|β–ˆβ–Œ        | 619/3818 [04:26<24:07,  2.21it/s]
 16%|β–ˆβ–Œ        | 620/3818 [04:26<24:05,  2.21it/s]
 16%|β–ˆβ–‹        | 621/3818 [04:27<24:04,  2.21it/s]
 16%|β–ˆβ–‹        | 622/3818 [04:27<24:02,  2.22it/s]
 16%|β–ˆβ–‹        | 623/3818 [04:28<24:00,  2.22it/s]
 16%|β–ˆβ–‹        | 624/3818 [04:28<24:03,  2.21it/s]
 16%|β–ˆβ–‹        | 625/3818 [04:29<24:03,  2.21it/s]
 16%|β–ˆβ–‹        | 626/3818 [04:29<24:05,  2.21it/s]
 16%|β–ˆβ–‹        | 627/3818 [04:30<24:03,  2.21it/s]
 16%|β–ˆβ–‹        | 628/3818 [04:30<24:03,  2.21it/s]
 16%|β–ˆβ–‹        | 629/3818 [04:30<24:02,  2.21it/s]
 17%|β–ˆβ–‹        | 630/3818 [04:31<23:59,  2.21it/s]
 17%|β–ˆβ–‹        | 631/3818 [04:31<24:01,  2.21it/s]
 17%|β–ˆβ–‹        | 632/3818 [04:32<24:00,  2.21it/s]
 17%|β–ˆβ–‹        | 633/3818 [04:32<24:01,  2.21it/s]
 17%|β–ˆβ–‹        | 634/3818 [04:33<23:58,  2.21it/s]
 17%|β–ˆβ–‹        | 635/3818 [04:33<23:57,  2.21it/s]
 17%|β–ˆβ–‹        | 636/3818 [04:34<23:59,  2.21it/s]
 17%|β–ˆβ–‹        | 637/3818 [04:34<23:56,  2.21it/s]
 17%|β–ˆβ–‹        | 638/3818 [04:35<23:52,  2.22it/s]
 17%|β–ˆβ–‹        | 639/3818 [04:35<23:56,  2.21it/s]
 17%|β–ˆβ–‹        | 640/3818 [04:35<23:54,  2.22it/s]
 17%|β–ˆβ–‹        | 641/3818 [04:36<23:54,  2.21it/s]
 17%|β–ˆβ–‹        | 642/3818 [04:36<23:55,  2.21it/s]
 17%|β–ˆβ–‹        | 643/3818 [04:37<23:55,  2.21it/s]
 17%|β–ˆβ–‹        | 644/3818 [04:37<23:56,  2.21it/s]
 17%|β–ˆβ–‹        | 645/3818 [04:38<23:50,  2.22it/s]
 17%|β–ˆβ–‹        | 646/3818 [04:38<23:47,  2.22it/s]
 17%|β–ˆβ–‹        | 647/3818 [04:39<23:51,  2.22it/s]
 17%|β–ˆβ–‹        | 648/3818 [04:39<23:52,  2.21it/s]
 17%|β–ˆβ–‹        | 649/3818 [04:39<23:51,  2.21it/s]
 17%|β–ˆβ–‹        | 650/3818 [04:40<23:53,  2.21it/s]
 17%|β–ˆβ–‹        | 651/3818 [04:40<23:53,  2.21it/s]
 17%|β–ˆβ–‹        | 652/3818 [04:41<23:50,  2.21it/s]
 17%|β–ˆβ–‹        | 653/3818 [04:41<23:52,  2.21it/s]
 17%|β–ˆβ–‹        | 654/3818 [04:42<23:49,  2.21it/s]
 17%|β–ˆβ–‹        | 655/3818 [04:42<23:51,  2.21it/s]
 17%|β–ˆβ–‹        | 656/3818 [04:43<23:49,  2.21it/s]
 17%|β–ˆβ–‹        | 657/3818 [04:43<23:46,  2.22it/s]
 17%|β–ˆβ–‹        | 658/3818 [04:44<23:47,  2.21it/s]
 17%|β–ˆβ–‹        | 659/3818 [04:44<23:39,  2.22it/s]
 17%|β–ˆβ–‹        | 660/3818 [04:44<23:44,  2.22it/s]
 17%|β–ˆβ–‹        | 661/3818 [04:45<23:48,  2.21it/s]
 17%|β–ˆβ–‹        | 662/3818 [04:45<23:48,  2.21it/s]
 17%|β–ˆβ–‹        | 663/3818 [04:46<23:48,  2.21it/s]
 17%|β–ˆβ–‹        | 664/3818 [04:46<23:46,  2.21it/s]
 17%|β–ˆβ–‹        | 665/3818 [04:47<23:38,  2.22it/s]
 17%|β–ˆβ–‹        | 666/3818 [04:47<23:38,  2.22it/s]
 17%|β–ˆβ–‹        | 667/3818 [04:48<23:43,  2.21it/s]
 17%|β–ˆβ–‹        | 668/3818 [04:48<23:43,  2.21it/s]
 18%|β–ˆβ–Š        | 669/3818 [04:49<23:49,  2.20it/s]
 18%|β–ˆβ–Š        | 670/3818 [04:49<23:43,  2.21it/s]
 18%|β–ˆβ–Š        | 671/3818 [04:49<23:43,  2.21it/s]
 18%|β–ˆβ–Š        | 672/3818 [04:50<23:45,  2.21it/s]
 18%|β–ˆβ–Š        | 673/3818 [04:50<23:44,  2.21it/s]
 18%|β–ˆβ–Š        | 674/3818 [04:51<23:47,  2.20it/s]
 18%|β–ˆβ–Š        | 675/3818 [04:51<23:44,  2.21it/s]
 18%|β–ˆβ–Š        | 676/3818 [04:52<23:45,  2.20it/s]
 18%|β–ˆβ–Š        | 677/3818 [04:52<23:38,  2.21it/s]
 18%|β–ˆβ–Š        | 678/3818 [04:53<23:39,  2.21it/s]
 18%|β–ˆβ–Š        | 679/3818 [04:53<23:39,  2.21it/s]
 18%|β–ˆβ–Š        | 680/3818 [04:54<23:37,  2.21it/s]
 18%|β–ˆβ–Š        | 681/3818 [04:54<23:38,  2.21it/s]
 18%|β–ˆβ–Š        | 682/3818 [04:54<23:35,  2.22it/s]
 18%|β–ˆβ–Š        | 683/3818 [04:55<23:38,  2.21it/s]
 18%|β–ˆβ–Š        | 684/3818 [04:55<23:39,  2.21it/s]
 18%|β–ˆβ–Š        | 685/3818 [04:56<23:37,  2.21it/s]
 18%|β–ˆβ–Š        | 686/3818 [04:56<23:37,  2.21it/s]
 18%|β–ˆβ–Š        | 687/3818 [04:57<23:36,  2.21it/s]
 18%|β–ˆβ–Š        | 688/3818 [04:57<23:39,  2.21it/s]
 18%|β–ˆβ–Š        | 689/3818 [04:58<23:35,  2.21it/s]
 18%|β–ˆβ–Š        | 690/3818 [04:58<23:37,  2.21it/s]
 18%|β–ˆβ–Š        | 691/3818 [04:58<23:34,  2.21it/s]
 18%|β–ˆβ–Š        | 692/3818 [04:59<23:32,  2.21it/s]
 18%|β–ˆβ–Š        | 693/3818 [04:59<23:32,  2.21it/s]
 18%|β–ˆβ–Š        | 694/3818 [05:00<23:33,  2.21it/s]
 18%|β–ˆβ–Š        | 695/3818 [05:00<23:37,  2.20it/s]
 18%|β–ˆβ–Š        | 696/3818 [05:01<23:35,  2.21it/s]
 18%|β–ˆβ–Š        | 697/3818 [05:01<23:35,  2.21it/s]
 18%|β–ˆβ–Š        | 698/3818 [05:02<23:34,  2.21it/s]
 18%|β–ˆβ–Š        | 699/3818 [05:02<23:36,  2.20it/s]
 18%|β–ˆβ–Š        | 700/3818 [05:03<23:59,  2.17it/s]
 18%|β–ˆβ–Š        | 701/3818 [05:03<23:50,  2.18it/s]
 18%|β–ˆβ–Š        | 702/3818 [05:03<23:47,  2.18it/s]
 18%|β–ˆβ–Š        | 703/3818 [05:04<23:35,  2.20it/s]
 18%|β–ˆβ–Š        | 704/3818 [05:04<23:40,  2.19it/s]
 18%|β–ˆβ–Š        | 705/3818 [05:05<23:32,  2.20it/s]
 18%|β–ˆβ–Š        | 706/3818 [05:05<23:35,  2.20it/s]
 19%|β–ˆβ–Š        | 707/3818 [05:06<23:32,  2.20it/s]
 19%|β–ˆβ–Š        | 708/3818 [05:06<23:33,  2.20it/s]
 19%|β–ˆβ–Š        | 709/3818 [05:07<23:28,  2.21it/s]
 19%|β–ˆβ–Š        | 710/3818 [05:07<23:29,  2.20it/s]
 19%|β–ˆβ–Š        | 711/3818 [05:08<23:30,  2.20it/s]
 19%|β–ˆβ–Š        | 712/3818 [05:08<23:32,  2.20it/s]
 19%|β–ˆβ–Š        | 713/3818 [05:08<23:35,  2.19it/s]
 19%|β–ˆβ–Š        | 714/3818 [05:09<23:47,  2.17it/s]
 19%|β–ˆβ–Š        | 715/3818 [05:09<23:47,  2.17it/s]
 19%|β–ˆβ–‰        | 716/3818 [05:10<23:34,  2.19it/s]
 19%|β–ˆβ–‰        | 717/3818 [05:10<23:29,  2.20it/s]
 19%|β–ˆβ–‰        | 718/3818 [05:11<23:31,  2.20it/s]
 19%|β–ˆβ–‰        | 719/3818 [05:11<23:27,  2.20it/s]
 19%|β–ˆβ–‰        | 720/3818 [05:12<23:28,  2.20it/s]
 19%|β–ˆβ–‰        | 721/3818 [05:12<23:20,  2.21it/s]
 19%|β–ˆβ–‰        | 722/3818 [05:13<23:34,  2.19it/s]
 19%|β–ˆβ–‰        | 723/3818 [05:13<23:29,  2.20it/s]
 19%|β–ˆβ–‰        | 724/3818 [05:14<23:27,  2.20it/s]
 19%|β–ˆβ–‰        | 725/3818 [05:14<23:21,  2.21it/s]
 19%|β–ˆβ–‰        | 726/3818 [05:14<23:25,  2.20it/s]
 19%|β–ˆβ–‰        | 727/3818 [05:15<23:21,  2.21it/s]
 19%|β–ˆβ–‰        | 728/3818 [05:15<23:25,  2.20it/s]
 19%|β–ˆβ–‰        | 729/3818 [05:16<23:28,  2.19it/s]
 19%|β–ˆβ–‰        | 730/3818 [05:16<23:26,  2.20it/s]
 19%|β–ˆβ–‰        | 731/3818 [05:17<23:28,  2.19it/s]
 19%|β–ˆβ–‰        | 732/3818 [05:17<23:24,  2.20it/s]
 19%|β–ˆβ–‰        | 733/3818 [05:18<23:19,  2.20it/s]
 19%|β–ˆβ–‰        | 734/3818 [05:18<23:17,  2.21it/s]
 19%|β–ˆβ–‰        | 735/3818 [05:19<23:19,  2.20it/s]
 19%|β–ˆβ–‰        | 736/3818 [05:19<23:20,  2.20it/s]
 19%|β–ˆβ–‰        | 737/3818 [05:19<23:21,  2.20it/s]
 19%|β–ˆβ–‰        | 738/3818 [05:20<23:16,  2.21it/s]
 19%|β–ˆβ–‰        | 739/3818 [05:20<23:16,  2.21it/s]
 19%|β–ˆβ–‰        | 740/3818 [05:21<23:17,  2.20it/s]
 19%|β–ˆβ–‰        | 741/3818 [05:21<23:18,  2.20it/s]
 19%|β–ˆβ–‰        | 742/3818 [05:22<23:17,  2.20it/s]
 19%|β–ˆβ–‰        | 743/3818 [05:22<23:18,  2.20it/s]
 19%|β–ˆβ–‰        | 744/3818 [05:23<24:32,  2.09it/s]
 20%|β–ˆβ–‰        | 745/3818 [05:23<24:14,  2.11it/s]
 20%|β–ˆβ–‰        | 746/3818 [05:24<24:00,  2.13it/s]
 20%|β–ˆβ–‰        | 747/3818 [05:24<23:45,  2.15it/s]
 20%|β–ˆβ–‰        | 748/3818 [05:24<23:36,  2.17it/s]
 20%|β–ˆβ–‰        | 749/3818 [05:25<23:24,  2.18it/s]
 20%|β–ˆβ–‰        | 750/3818 [05:25<23:29,  2.18it/s]
 20%|β–ˆβ–‰        | 751/3818 [05:26<23:22,  2.19it/s]
 20%|β–ˆβ–‰        | 752/3818 [05:26<23:24,  2.18it/s]
 20%|β–ˆβ–‰        | 753/3818 [05:27<23:18,  2.19it/s]
 20%|β–ˆβ–‰        | 754/3818 [05:27<23:16,  2.19it/s]
 20%|β–ˆβ–‰        | 755/3818 [05:28<23:15,  2.20it/s]
 20%|β–ˆβ–‰        | 756/3818 [05:28<23:13,  2.20it/s]
 20%|β–ˆβ–‰        | 757/3818 [05:29<23:16,  2.19it/s]
 20%|β–ˆβ–‰        | 758/3818 [05:29<23:10,  2.20it/s]
 20%|β–ˆβ–‰        | 759/3818 [05:30<23:15,  2.19it/s]
 20%|β–ˆβ–‰        | 760/3818 [05:30<23:11,  2.20it/s]
 20%|β–ˆβ–‰        | 761/3818 [05:30<23:11,  2.20it/s]
 20%|β–ˆβ–‰        | 762/3818 [05:31<23:09,  2.20it/s]
 20%|β–ˆβ–‰        | 763/3818 [05:31<23:13,  2.19it/s]
 20%|β–ˆβ–ˆ        | 764/3818 [05:32<23:15,  2.19it/s]
 20%|β–ˆβ–ˆ        | 765/3818 [05:32<23:08,  2.20it/s]
 20%|β–ˆβ–ˆ        | 766/3818 [05:33<23:21,  2.18it/s]
 20%|β–ˆβ–ˆ        | 767/3818 [05:33<23:16,  2.18it/s]
 20%|β–ˆβ–ˆ        | 768/3818 [05:34<23:12,  2.19it/s]
 20%|β–ˆβ–ˆ        | 769/3818 [05:34<23:11,  2.19it/s]
 20%|β–ˆβ–ˆ        | 770/3818 [05:35<23:09,  2.19it/s]
 20%|β–ˆβ–ˆ        | 771/3818 [05:35<23:09,  2.19it/s]
 20%|β–ˆβ–ˆ        | 772/3818 [05:35<23:09,  2.19it/s]
 20%|β–ˆβ–ˆ        | 773/3818 [05:36<23:03,  2.20it/s]
 20%|β–ˆβ–ˆ        | 774/3818 [05:36<23:04,  2.20it/s]
 20%|β–ˆβ–ˆ        | 775/3818 [05:37<23:07,  2.19it/s]
 20%|β–ˆβ–ˆ        | 776/3818 [05:37<23:05,  2.20it/s]
 20%|β–ˆβ–ˆ        | 777/3818 [05:38<23:04,  2.20it/s]
 20%|β–ˆβ–ˆ        | 778/3818 [05:38<23:07,  2.19it/s]
 20%|β–ˆβ–ˆ        | 779/3818 [05:39<23:06,  2.19it/s]
 20%|β–ˆβ–ˆ        | 780/3818 [05:39<23:05,  2.19it/s]
 20%|β–ˆβ–ˆ        | 781/3818 [05:40<23:02,  2.20it/s]
 20%|β–ˆβ–ˆ        | 782/3818 [05:40<23:05,  2.19it/s]
 21%|β–ˆβ–ˆ        | 783/3818 [05:40<23:00,  2.20it/s]
 21%|β–ˆβ–ˆ        | 784/3818 [05:41<23:00,  2.20it/s]
 21%|β–ˆβ–ˆ        | 785/3818 [05:41<22:57,  2.20it/s]
 21%|β–ˆβ–ˆ        | 786/3818 [05:42<22:56,  2.20it/s]
 21%|β–ˆβ–ˆ        | 787/3818 [05:42<23:00,  2.20it/s]
 21%|β–ˆβ–ˆ        | 788/3818 [05:43<22:59,  2.20it/s]
 21%|β–ˆβ–ˆ        | 789/3818 [05:43<23:01,  2.19it/s]
 21%|β–ˆβ–ˆ        | 790/3818 [05:44<22:59,  2.19it/s]
 21%|β–ˆβ–ˆ        | 791/3818 [05:44<23:02,  2.19it/s]
 21%|β–ˆβ–ˆ        | 792/3818 [05:45<22:58,  2.20it/s]
 21%|β–ˆβ–ˆ        | 793/3818 [05:45<22:56,  2.20it/s]
 21%|β–ˆβ–ˆ        | 794/3818 [05:45<22:55,  2.20it/s]
 21%|β–ˆβ–ˆ        | 795/3818 [05:46<22:56,  2.20it/s]
 21%|β–ˆβ–ˆ        | 796/3818 [05:46<22:57,  2.19it/s]
 21%|β–ˆβ–ˆ        | 797/3818 [05:47<22:54,  2.20it/s]
 21%|β–ˆβ–ˆ        | 798/3818 [05:47<22:54,  2.20it/s]
 21%|β–ˆβ–ˆ        | 799/3818 [05:48<23:10,  2.17it/s]
 21%|β–ˆβ–ˆ        | 800/3818 [05:48<23:09,  2.17it/s]
 21%|β–ˆβ–ˆ        | 801/3818 [05:49<23:01,  2.18it/s]
 21%|β–ˆβ–ˆ        | 802/3818 [05:49<22:57,  2.19it/s]
 21%|β–ˆβ–ˆ        | 803/3818 [05:50<22:58,  2.19it/s]
 21%|β–ˆβ–ˆ        | 804/3818 [05:50<22:55,  2.19it/s]
 21%|β–ˆβ–ˆ        | 805/3818 [05:50<22:56,  2.19it/s]
 21%|β–ˆβ–ˆ        | 806/3818 [05:51<22:55,  2.19it/s]
 21%|β–ˆβ–ˆ        | 807/3818 [05:51<22:56,  2.19it/s]
 21%|β–ˆβ–ˆ        | 808/3818 [05:52<22:53,  2.19it/s]
 21%|β–ˆβ–ˆ        | 809/3818 [05:52<22:53,  2.19it/s]
 21%|β–ˆβ–ˆ        | 810/3818 [05:53<22:51,  2.19it/s]
 21%|β–ˆβ–ˆ        | 811/3818 [05:53<22:52,  2.19it/s]
 21%|β–ˆβ–ˆβ–       | 812/3818 [05:54<22:50,  2.19it/s]
 21%|β–ˆβ–ˆβ–       | 813/3818 [05:54<22:53,  2.19it/s]
 21%|β–ˆβ–ˆβ–       | 814/3818 [05:55<22:51,  2.19it/s]
 21%|β–ˆβ–ˆβ–       | 815/3818 [05:55<22:47,  2.20it/s]
 21%|β–ˆβ–ˆβ–       | 816/3818 [05:56<22:50,  2.19it/s]
 21%|β–ˆβ–ˆβ–       | 817/3818 [05:56<22:47,  2.19it/s]
 21%|β–ˆβ–ˆβ–       | 818/3818 [05:56<22:47,  2.19it/s]
 21%|β–ˆβ–ˆβ–       | 819/3818 [05:57<22:39,  2.21it/s]
 21%|β–ˆβ–ˆβ–       | 820/3818 [05:57<22:44,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 821/3818 [05:58<22:42,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 822/3818 [05:58<22:41,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 823/3818 [05:59<22:42,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 824/3818 [05:59<22:46,  2.19it/s]
 22%|β–ˆβ–ˆβ–       | 825/3818 [06:00<22:43,  2.19it/s]
 22%|β–ˆβ–ˆβ–       | 826/3818 [06:00<22:46,  2.19it/s]
 22%|β–ˆβ–ˆβ–       | 827/3818 [06:01<22:45,  2.19it/s]
 22%|β–ˆβ–ˆβ–       | 828/3818 [06:01<22:42,  2.19it/s]
 22%|β–ˆβ–ˆβ–       | 829/3818 [06:01<22:40,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 830/3818 [06:02<22:34,  2.21it/s]
 22%|β–ˆβ–ˆβ–       | 831/3818 [06:02<22:40,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 832/3818 [06:03<22:44,  2.19it/s]
 22%|β–ˆβ–ˆβ–       | 833/3818 [06:03<22:40,  2.19it/s]
 22%|β–ˆβ–ˆβ–       | 834/3818 [06:04<22:41,  2.19it/s]
 22%|β–ˆβ–ˆβ–       | 835/3818 [06:04<22:36,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 836/3818 [06:05<22:37,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 837/3818 [06:05<22:34,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 838/3818 [06:06<22:38,  2.19it/s]
 22%|β–ˆβ–ˆβ–       | 839/3818 [06:06<22:35,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 840/3818 [06:06<22:34,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 841/3818 [06:07<22:32,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 842/3818 [06:07<22:33,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 843/3818 [06:08<22:41,  2.19it/s]
 22%|β–ˆβ–ˆβ–       | 844/3818 [06:08<22:35,  2.19it/s]
 22%|β–ˆβ–ˆβ–       | 845/3818 [06:09<22:34,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 846/3818 [06:09<22:29,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 847/3818 [06:10<22:29,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 848/3818 [06:10<22:29,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 849/3818 [06:11<22:31,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 850/3818 [06:11<22:26,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 851/3818 [06:11<22:23,  2.21it/s]
 22%|β–ˆβ–ˆβ–       | 852/3818 [06:12<22:22,  2.21it/s]
 22%|β–ˆβ–ˆβ–       | 853/3818 [06:12<22:20,  2.21it/s]
 22%|β–ˆβ–ˆβ–       | 854/3818 [06:13<22:33,  2.19it/s]
 22%|β–ˆβ–ˆβ–       | 855/3818 [06:13<22:32,  2.19it/s]
 22%|β–ˆβ–ˆβ–       | 856/3818 [06:14<22:29,  2.19it/s]
 22%|β–ˆβ–ˆβ–       | 857/3818 [06:14<22:23,  2.20it/s]
 22%|β–ˆβ–ˆβ–       | 858/3818 [06:15<22:29,  2.19it/s]
 22%|β–ˆβ–ˆβ–       | 859/3818 [06:15<22:21,  2.20it/s]
 23%|β–ˆβ–ˆβ–Ž       | 860/3818 [06:16<22:23,  2.20it/s]
 23%|β–ˆβ–ˆβ–Ž       | 861/3818 [06:16<22:19,  2.21it/s]
 23%|β–ˆβ–ˆβ–Ž       | 862/3818 [06:16<22:20,  2.21it/s]
 23%|β–ˆβ–ˆβ–Ž       | 863/3818 [06:17<22:20,  2.21it/s]
 23%|β–ˆβ–ˆβ–Ž       | 864/3818 [06:17<22:21,  2.20it/s]
 23%|β–ˆβ–ˆβ–Ž       | 865/3818 [06:18<22:29,  2.19it/s]
 23%|β–ˆβ–ˆβ–Ž       | 866/3818 [06:18<22:29,  2.19it/s]
 23%|β–ˆβ–ˆβ–Ž       | 867/3818 [06:19<22:25,  2.19it/s]
 23%|β–ˆβ–ˆβ–Ž       | 868/3818 [06:19<22:23,  2.20it/s]
 23%|β–ˆβ–ˆβ–Ž       | 869/3818 [06:20<22:21,  2.20it/s]
 23%|β–ˆβ–ˆβ–Ž       | 870/3818 [06:20<22:20,  2.20it/s]
 23%|β–ˆβ–ˆβ–Ž       | 871/3818 [06:21<22:18,  2.20it/s]
 23%|β–ˆβ–ˆβ–Ž       | 872/3818 [06:21<22:13,  2.21it/s]
 23%|β–ˆβ–ˆβ–Ž       | 873/3818 [06:21<22:13,  2.21it/s]
 23%|β–ˆβ–ˆβ–Ž       | 874/3818 [06:22<22:09,  2.21it/s]
 23%|β–ˆβ–ˆβ–Ž       | 875/3818 [06:22<22:18,  2.20it/s]
 23%|β–ˆβ–ˆβ–Ž       | 876/3818 [06:23<22:15,  2.20it/s]
 23%|β–ˆβ–ˆβ–Ž       | 877/3818 [06:23<22:12,  2.21it/s]
 23%|β–ˆβ–ˆβ–Ž       | 878/3818 [06:24<22:14,  2.20it/s]
 23%|β–ˆβ–ˆβ–Ž       | 879/3818 [06:24<22:14,  2.20it/s]
 23%|β–ˆβ–ˆβ–Ž       | 880/3818 [06:25<22:14,  2.20it/s]
 23%|β–ˆβ–ˆβ–Ž       | 881/3818 [06:25<22:13,  2.20it/s]