luciana's picture
Update README.md
6b15604 verified
|
raw
history blame
2.3 kB
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-lungs-disease
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9075907590759076

swin-tiny-patch4-window7-224-finetuned-lungs-disease

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2434
  • Accuracy: 0.9076

Model description

Utilizand modelul pre-antrenat, am facut urmatorul cod utilizand google-colab: https://colab.research.google.com/drive/1OvIDRB79KsnBbxU6yPXJnV8t1M5bI3rL#scrollTo=oD74VCH_kzbn

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.814 0.98 21 0.5313 0.7492
0.4444 2.0 43 0.3200 0.8911
0.3322 2.98 64 0.3148 0.8911
0.2975 4.0 86 0.2836 0.8977
0.254 4.88 105 0.2434 0.9076

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2