File size: 1,926 Bytes
3cfa0a2
 
 
 
 
 
58fccda
3cfa0a2
 
 
f12ee62
3cfa0a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f12ee62
3cfa0a2
58fccda
 
 
 
3cfa0a2
 
 
 
 
 
471fbba
3cfa0a2
 
 
 
 
 
 
 
 
 
 
58fccda
3cfa0a2
 
 
 
 
 
 
 
 
 
 
 
 
 
58fccda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- audiofolder
- lucas-meyer/asr_af
metrics:
- wer
model-index:
- name: xls-r-asr_af-run4
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: audiofolder
      type: audiofolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Wer
      type: wer
      value: 0.36875288328463784
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# xls-r-asr_af-run4

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the asr_af dataset.
It achieves the following results:
- Wer (Validation): 37.89%
- Wer (Test): 38.41%

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 3
- total_train_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer (Train)    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 4.1702        | 1.76  | 400  | 1.1378          | 0.8201 |
| 0.6633        | 3.52  | 800  | 0.5165          | 0.4819 |
| 0.3114        | 5.29  | 1200 | 0.4763          | 0.4115 |
| 0.1986        | 7.05  | 1600 | 0.5097          | 0.3923 |
| 0.136         | 8.81  | 2000 | 0.4876          | 0.3829 |
| 0.1098        | 10.57 | 2400 | 0.5036          | 0.3688 |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3