lucaordronneau's picture
update model card README.md
576d7e5
|
raw
history blame
2.87 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: twitter-roberta-base-sentiment-latest-finetuned-FG-CONCAT_SENTENCE-H-NEWS
    results: []

twitter-roberta-base-sentiment-latest-finetuned-FG-CONCAT_SENTENCE-H-NEWS

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-sentiment-latest on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.6335
  • Accuracy: 0.5275
  • F1: 0.5198

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 61 1.0568 0.4396 0.2684
No log 2.0 122 1.0518 0.4396 0.2684
No log 3.0 183 1.0584 0.4396 0.2684
No log 4.0 244 1.1720 0.3956 0.3223
No log 5.0 305 1.2473 0.5275 0.5196
No log 6.0 366 1.0789 0.5220 0.5301
No log 7.0 427 1.3556 0.5604 0.5426
No log 8.0 488 1.7314 0.5330 0.5158
0.8045 9.0 549 2.2774 0.5330 0.5161
0.8045 10.0 610 2.8362 0.4451 0.4512
0.8045 11.0 671 2.9130 0.5275 0.4931
0.8045 12.0 732 3.1023 0.5110 0.5010
0.8045 13.0 793 3.2670 0.5385 0.5208
0.8045 14.0 854 3.4151 0.4945 0.4856
0.8045 15.0 915 3.7614 0.4615 0.4458
0.8045 16.0 976 3.5224 0.5220 0.5122
0.0535 17.0 1037 3.5196 0.5165 0.5102
0.0535 18.0 1098 3.5791 0.5110 0.5039
0.0535 19.0 1159 3.6220 0.5220 0.5137
0.0535 20.0 1220 3.6335 0.5275 0.5198

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.9.1
  • Datasets 1.18.4
  • Tokenizers 0.11.6