norbert3-base / README.md
davda54's picture
Update README.md
d0efb80
|
raw
history blame
3.14 kB
metadata
language:
  - 'no'
  - nb
  - nn
inference: false
tags:
  - BERT
  - NorBERT
  - Norwegian
  - encoder
license: cc-by-4.0

NorBERT 3 base

The official release of a new generation of NorBERT language models described in paper NorBench — A Benchmark for Norwegian Language Models. Plese read the paper to learn more details about the model.

Other sizes:

Generative NorT5 siblings:

Example usage

This model currently needs a custom wrapper from modeling_norbert.py, you should therefore load the model with trust_remote_code=True.

import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM

tokenizer = AutoTokenizer.from_pretrained("ltg/norbert3-base")
model = AutoModelForMaskedLM.from_pretrained("ltg/norbert3-base", trust_remote_code=True)

mask_id = tokenizer.convert_tokens_to_ids("[MASK]")
input_text = tokenizer("Nå ønsker de seg en[MASK] bolig.", return_tensors="pt")
output_p = bert(**input_text)
output_text = torch.where(input_text.input_ids == mask_id, output_p.logits.argmax(-1), input_text.input_ids)

# should output: '[CLS] Nå ønsker de seg en ny bolig.[SEP]'
print(tokenizer.decode(output_text[0].tolist()))

The following classes are currently implemented: AutoModel, AutoModelMaskedLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelForQuestionAnswering and AutoModeltForMultipleChoice.

Cite us

@inproceedings{samuel-etal-2023-norbench,
    title = "{N}or{B}ench {--} A Benchmark for {N}orwegian Language Models",
    author = "Samuel, David  and
      Kutuzov, Andrey  and
      Touileb, Samia  and
      Velldal, Erik  and
      {\O}vrelid, Lilja  and
      R{\o}nningstad, Egil  and
      Sigdel, Elina  and
      Palatkina, Anna",
    booktitle = "Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)",
    month = may,
    year = "2023",
    address = "T{\'o}rshavn, Faroe Islands",
    publisher = "University of Tartu Library",
    url = "https://aclanthology.org/2023.nodalida-1.61",
    pages = "618--633",
    abstract = "We present NorBench: a streamlined suite of NLP tasks and probes for evaluating Norwegian language models (LMs) on standardized data splits and evaluation metrics. We also introduce a range of new Norwegian language models (both encoder and encoder-decoder based). Finally, we compare and analyze their performance, along with other existing LMs, across the different benchmark tests of NorBench.",
}