File size: 3,469 Bytes
e4b1b40 c64c467 e4b1b40 a3c1288 13b06c7 a3c1288 1abd6ae e4b1b40 1abd6ae e4b1b40 812e130 d8e4832 e4b1b40 6c0605a e4b1b40 c64c467 e4b1b40 6c0605a e4b1b40 c64c467 e4b1b40 c64c467 e4b1b40 c64c467 3cad39a e4b1b40 c64c467 e4b1b40 3cad39a e4b1b40 812e130 e4b1b40 1abd6ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
license: mit
datasets:
- best2009
- scb_mt_enth_2020
- oscar
- wikipedia
language:
- th
widget:
- text: วัน ที่ _ 12 _ มีนาคม นี้ _ ฉัน จะ ไป <mask> วัดพระแก้ว _ ที่ กรุงเทพ
library_name: transformers
---
# HoogBERTa
This repository includes the Thai pretrained language representation (HoogBERTa_base) and the fine-tuned model for multitask sequence labeling.
# Documentation
## Prerequisite
Since we use subword-nmt BPE encoding, input needs to be pre-tokenize using [BEST](https://huggingface.co/datasets/best2009) standard before inputting into HoogBERTa
```
pip install attacut
```
## Getting Start
To initialize the model from hub, use the following commands
```python
from transformers import AutoTokenizer, AutoModel
from attacut import tokenized
import torch
tokenizer = AutoTokenizer.from_pretrained("new5558/HoogBERTa")
model = AutoModel.from_pretrained("new5558/HoogBERTa")
```
To annotate POS, NE, and clause boundary, use the following commands
```
```
To extract token features, based on the RoBERTa architecture, use the following commands
```python
model.eval()
sentence = "วันที่ 12 มีนาคมนี้ ฉันจะไปเที่ยววัดพระแก้ว ที่กรุงเทพ"
all_sent = []
sentences = sentence.split(" ")
for sent in sentences:
all_sent.append(" ".join(tokenize(sent)).replace("_","[!und:]"))
sentence = " _ ".join(all_sent)
tokenized_text = tokenizer(sentence, return_tensors = 'pt')
token_ids = tokenized_text['input_ids']
with torch.no_grad():
features = model(**tokenized_text, output_hidden_states = True).hidden_states[-1]
```
For batch processing,
```python
model.eval()
sentenceL = ["วันที่ 12 มีนาคมนี้","ฉันจะไปเที่ยววัดพระแก้ว ที่กรุงเทพ"]
inputList = []
for sentX in sentenceL:
sentences = sentX.split(" ")
all_sent = []
for sent in sentences:
all_sent.append(" ".join(tokenize(sent)).replace("_","[!und:]"))
sentence = " _ ".join(all_sent)
inputList.append(sentence)
tokenized_text = tokenizer(inputList, padding = True, return_tensors = 'pt')
token_ids = tokenized_text['input_ids']
with torch.no_grad():
features = model(**tokenized_text, output_hidden_states = True).hidden_states[-1]
```
To use HoogBERTa as an embedding layer, use
```python
with torch.no_grad():
features = model(token_ids, output_hidden_states = True).hidden_states[-1] # where token_ids is a tensor with type "long".
```
## Conversion Code
If you are interested in how to convert Fairseq and subword-nmt Roberta into Huggingface hub here is my code used to do the conversion and test for parity match:
https://www.kaggle.com/norapatbuppodom/hoogberta-conversion
# Citation
Please cite as:
``` bibtex
@inproceedings{porkaew2021hoogberta,
title = {HoogBERTa: Multi-task Sequence Labeling using Thai Pretrained Language Representation},
author = {Peerachet Porkaew, Prachya Boonkwan and Thepchai Supnithi},
booktitle = {The Joint International Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP 2021)},
year = {2021},
address={Online}
}
```
Download full-text [PDF](https://drive.google.com/file/d/1hwdyIssR5U_knhPE2HJigrc0rlkqWeLF/view?usp=sharing)
Check out the code on [Github](https://github.com/lstnlp/HoogBERTa) |