File size: 3,353 Bytes
ff65980 1a7319b 6b54b63 1a7319b 647f76e 1a7319b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
datasets:
- lst20
language:
- th
widget:
- text: วัน ที่ _ 12 _ มีนาคม นี้ _ ฉัน จะ ไป เที่ยว วัดพระแก้ว _ ที่ กรุงเทพ
library_name: transformers
---
# HoogBERTa
This repository includes the Thai pretrained language representation (HoogBERTa_base) fine-tuned for **Part-of-Speech Tagging (POS) Task**.
# Documentation
## Prerequisite
Since we use subword-nmt BPE encoding, input needs to be pre-tokenize using [BEST](https://huggingface.co/datasets/best2009) standard before inputting into HoogBERTa
```
pip install attacut
```
## Getting Start
To initialize the model from hub, use the following commands
```python
from transformers import RobertaTokenizerFast, RobertaForTokenClassification
from attacut import tokenized
import torch
tokenizer = RobertaTokenizerFast.from_pretrained("new5558/HoogBERTa-POS-lst20")
model = RobertaForTokenClassification.from_pretrained("new5558/HoogBERTa-POS-lst20")
```
To do POS Tagging, use the following commands
```python
from transformers import pipeline
nlp = pipeline('token-classification', model=model, tokenizer=tokenizer, aggregation_strategy="none")
sentence = "วันที่ 12 มีนาคมนี้ ฉันจะไปเที่ยววัดพระแก้ว ที่กรุงเทพ"
all_sent = []
sentences = sentence.split(" ")
for sent in sentences:
all_sent.append(" ".join(tokenize(sent)).replace("_","[!und:]"))
sentence = " _ ".join(all_sent)
print(nlp(sentence))
```
For batch processing,
```python
from transformers import pipeline
nlp = pipeline('token-classification', model=model, tokenizer=tokenizer, aggregation_strategy="none")
sentenceL = ["วันที่ 12 มีนาคมนี้","ฉันจะไปเที่ยววัดพระแก้ว ที่กรุงเทพ"]
inputList = []
for sentX in sentenceL:
sentences = sentX.split(" ")
all_sent = []
for sent in sentences:
all_sent.append(" ".join(tokenize(sent)).replace("_","[!und:]"))
sentence = " _ ".join(all_sent)
inputList.append(sentence)
print(nlp(inputList))
```
# Huggingface Models
1. `HoogBERTaEncoder`
- [HoogBERTa](https://huggingface.co/new5558/HoogBERTa): `Feature Extraction` and `Mask Language Modeling`
2. `HoogBERTaMuliTaskTagger`:
- [HoogBERTa-NER-lst20](https://huggingface.co/new5558/HoogBERTa-NER-lst20): `Named-entity recognition (NER)` based on LST20
- [HoogBERTa-POS-lst20](https://huggingface.co/new5558/HoogBERTa-POS-lst20): `Part-of-speech tagging (POS)` based on LST20
- [HoogBERTa-SENTENCE-lst20](https://huggingface.co/new5558/HoogBERTa-SENTENCE-lst20): `Clause Boundary Classification` based on LST20
# Citation
Please cite as:
``` bibtex
@inproceedings{porkaew2021hoogberta,
title = {HoogBERTa: Multi-task Sequence Labeling using Thai Pretrained Language Representation},
author = {Peerachet Porkaew, Prachya Boonkwan and Thepchai Supnithi},
booktitle = {The Joint International Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP 2021)},
year = {2021},
address={Online}
}
```
Download full-text [PDF](https://drive.google.com/file/d/1hwdyIssR5U_knhPE2HJigrc0rlkqWeLF/view?usp=sharing)
Check out the code on [Github](https://github.com/lstnlp/HoogBERTa) |