File size: 2,227 Bytes
8af10ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- tweetner7
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: tweetner7
type: tweetner7
config: tweetner7
split: validation_2021
args: tweetner7
metrics:
- name: Precision
type: precision
value: 0.7025612778848802
- name: Recall
type: recall
value: 0.6474619289340101
- name: F1
type: f1
value: 0.6738872011623299
- name: Accuracy
type: accuracy
value: 0.8775995608952857
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the tweetner7 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4089
- Precision: 0.7026
- Recall: 0.6475
- F1: 0.6739
- Accuracy: 0.8776
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 312 | 0.4428 | 0.7259 | 0.5860 | 0.6485 | 0.8705 |
| 0.5414 | 2.0 | 624 | 0.4090 | 0.7146 | 0.6297 | 0.6695 | 0.8775 |
| 0.5414 | 3.0 | 936 | 0.4089 | 0.7026 | 0.6475 | 0.6739 | 0.8776 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
|