File size: 1,973 Bytes
f04182b 5873799 96359e2 7244310 2244eb7 7244310 2244eb7 402b6f4 f04182b 57cd114 f04182b 57cd114 f04182b 57cd114 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner-word-embedding-model
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-finetuned-ner-word-embedding-model
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the the combined training dataset(tweetner7(train_2021)+augmented dataset(train_2021)
using word embedding technique).
Training Dataset: lsoni/combined_tweetner7_word_embedding_augmented_dataset
Evaluation Dataset: lsoni/combined_tweetner7_word_embedding_augmented_dataset_eval
It achieves the following results on the evaluation set:
- Loss: 0.5411
- Precision: 0.6710
- Recall: 0.5062
- F1: 0.5771
- Accuracy: 0.8650
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.7157 | 1.0 | 624 | 0.5842 | 0.6958 | 0.4498 | 0.5464 | 0.8608 |
| 0.5299 | 2.0 | 1248 | 0.5449 | 0.6662 | 0.4897 | 0.5645 | 0.8635 |
| 0.4648 | 3.0 | 1872 | 0.5411 | 0.6710 | 0.5062 | 0.5771 | 0.8650 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.12.1
- Datasets 2.10.1
- Tokenizers 0.12.1
|