File size: 14,699 Bytes
81c7085 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import argparse
import gc
import math
import os
from typing import Optional
import torch
from accelerate import init_empty_weights
from tqdm import tqdm
from transformers import CLIPTokenizer
from library import model_util, sdxl_model_util, train_util, sdxl_original_unet
from library.sdxl_lpw_stable_diffusion import SdxlStableDiffusionLongPromptWeightingPipeline
TOKENIZER1_PATH = "openai/clip-vit-large-patch14"
TOKENIZER2_PATH = "laion/CLIP-ViT-bigG-14-laion2B-39B-b160k"
# DEFAULT_NOISE_OFFSET = 0.0357
def load_target_model(args, accelerator, model_version: str, weight_dtype):
# load models for each process
model_dtype = match_mixed_precision(args, weight_dtype) # prepare fp16/bf16
for pi in range(accelerator.state.num_processes):
if pi == accelerator.state.local_process_index:
print(f"loading model for process {accelerator.state.local_process_index}/{accelerator.state.num_processes}")
(
load_stable_diffusion_format,
text_encoder1,
text_encoder2,
vae,
unet,
logit_scale,
ckpt_info,
) = _load_target_model(
args.pretrained_model_name_or_path,
args.vae,
model_version,
weight_dtype,
accelerator.device if args.lowram else "cpu",
model_dtype,
)
# work on low-ram device
if args.lowram:
text_encoder1.to(accelerator.device)
text_encoder2.to(accelerator.device)
unet.to(accelerator.device)
vae.to(accelerator.device)
gc.collect()
torch.cuda.empty_cache()
accelerator.wait_for_everyone()
text_encoder1, text_encoder2, unet = train_util.transform_models_if_DDP([text_encoder1, text_encoder2, unet])
return load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info
def _load_target_model(
name_or_path: str, vae_path: Optional[str], model_version: str, weight_dtype, device="cpu", model_dtype=None
):
# model_dtype only work with full fp16/bf16
name_or_path = os.readlink(name_or_path) if os.path.islink(name_or_path) else name_or_path
load_stable_diffusion_format = os.path.isfile(name_or_path) # determine SD or Diffusers
if load_stable_diffusion_format:
print(f"load StableDiffusion checkpoint: {name_or_path}")
(
text_encoder1,
text_encoder2,
vae,
unet,
logit_scale,
ckpt_info,
) = sdxl_model_util.load_models_from_sdxl_checkpoint(model_version, name_or_path, device, model_dtype)
else:
# Diffusers model is loaded to CPU
from diffusers import StableDiffusionXLPipeline
variant = "fp16" if weight_dtype == torch.float16 else None
print(f"load Diffusers pretrained models: {name_or_path}, variant={variant}")
try:
try:
pipe = StableDiffusionXLPipeline.from_pretrained(
name_or_path, torch_dtype=model_dtype, variant=variant, tokenizer=None
)
except EnvironmentError as ex:
if variant is not None:
print("try to load fp32 model")
pipe = StableDiffusionXLPipeline.from_pretrained(name_or_path, variant=None, tokenizer=None)
else:
raise ex
except EnvironmentError as ex:
print(
f"model is not found as a file or in Hugging Face, perhaps file name is wrong? / 指定したモデル名のファイル、またはHugging Faceのモデルが見つかりません。ファイル名が誤っているかもしれません: {name_or_path}"
)
raise ex
text_encoder1 = pipe.text_encoder
text_encoder2 = pipe.text_encoder_2
# convert to fp32 for cache text_encoders outputs
if text_encoder1.dtype != torch.float32:
text_encoder1 = text_encoder1.to(dtype=torch.float32)
if text_encoder2.dtype != torch.float32:
text_encoder2 = text_encoder2.to(dtype=torch.float32)
vae = pipe.vae
unet = pipe.unet
del pipe
# Diffusers U-Net to original U-Net
state_dict = sdxl_model_util.convert_diffusers_unet_state_dict_to_sdxl(unet.state_dict())
with init_empty_weights():
unet = sdxl_original_unet.SdxlUNet2DConditionModel() # overwrite unet
sdxl_model_util._load_state_dict_on_device(unet, state_dict, device=device, dtype=model_dtype)
print("U-Net converted to original U-Net")
logit_scale = None
ckpt_info = None
# VAEを読み込む
if vae_path is not None:
vae = model_util.load_vae(vae_path, weight_dtype)
print("additional VAE loaded")
return load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info
def load_tokenizers(args: argparse.Namespace):
print("prepare tokenizers")
original_paths = [TOKENIZER1_PATH, TOKENIZER2_PATH]
tokeniers = []
for i, original_path in enumerate(original_paths):
tokenizer: CLIPTokenizer = None
if args.tokenizer_cache_dir:
local_tokenizer_path = os.path.join(args.tokenizer_cache_dir, original_path.replace("/", "_"))
if os.path.exists(local_tokenizer_path):
print(f"load tokenizer from cache: {local_tokenizer_path}")
tokenizer = CLIPTokenizer.from_pretrained(local_tokenizer_path)
if tokenizer is None:
tokenizer = CLIPTokenizer.from_pretrained(original_path)
if args.tokenizer_cache_dir and not os.path.exists(local_tokenizer_path):
print(f"save Tokenizer to cache: {local_tokenizer_path}")
tokenizer.save_pretrained(local_tokenizer_path)
if i == 1:
tokenizer.pad_token_id = 0 # fix pad token id to make same as open clip tokenizer
tokeniers.append(tokenizer)
if hasattr(args, "max_token_length") and args.max_token_length is not None:
print(f"update token length: {args.max_token_length}")
return tokeniers
def match_mixed_precision(args, weight_dtype):
if args.full_fp16:
assert (
weight_dtype == torch.float16
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
return weight_dtype
elif args.full_bf16:
assert (
weight_dtype == torch.bfloat16
), "full_bf16 requires mixed precision='bf16' / full_bf16を使う場合はmixed_precision='bf16'を指定してください。"
return weight_dtype
else:
return None
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
device=timesteps.device
)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def get_timestep_embedding(x, outdim):
assert len(x.shape) == 2
b, dims = x.shape[0], x.shape[1]
x = torch.flatten(x)
emb = timestep_embedding(x, outdim)
emb = torch.reshape(emb, (b, dims * outdim))
return emb
def get_size_embeddings(orig_size, crop_size, target_size, device):
emb1 = get_timestep_embedding(orig_size, 256)
emb2 = get_timestep_embedding(crop_size, 256)
emb3 = get_timestep_embedding(target_size, 256)
vector = torch.cat([emb1, emb2, emb3], dim=1).to(device)
return vector
def save_sd_model_on_train_end(
args: argparse.Namespace,
src_path: str,
save_stable_diffusion_format: bool,
use_safetensors: bool,
save_dtype: torch.dtype,
epoch: int,
global_step: int,
text_encoder1,
text_encoder2,
unet,
vae,
logit_scale,
ckpt_info,
):
def sd_saver(ckpt_file, epoch_no, global_step):
sai_metadata = train_util.get_sai_model_spec(None, args, True, False, False, is_stable_diffusion_ckpt=True)
sdxl_model_util.save_stable_diffusion_checkpoint(
ckpt_file,
text_encoder1,
text_encoder2,
unet,
epoch_no,
global_step,
ckpt_info,
vae,
logit_scale,
sai_metadata,
save_dtype,
)
def diffusers_saver(out_dir):
sdxl_model_util.save_diffusers_checkpoint(
out_dir,
text_encoder1,
text_encoder2,
unet,
src_path,
vae,
use_safetensors=use_safetensors,
save_dtype=save_dtype,
)
train_util.save_sd_model_on_train_end_common(
args, save_stable_diffusion_format, use_safetensors, epoch, global_step, sd_saver, diffusers_saver
)
# epochとstepの保存、メタデータにepoch/stepが含まれ引数が同じになるため、統合している
# on_epoch_end: Trueならepoch終了時、Falseならstep経過時
def save_sd_model_on_epoch_end_or_stepwise(
args: argparse.Namespace,
on_epoch_end: bool,
accelerator,
src_path,
save_stable_diffusion_format: bool,
use_safetensors: bool,
save_dtype: torch.dtype,
epoch: int,
num_train_epochs: int,
global_step: int,
text_encoder1,
text_encoder2,
unet,
vae,
logit_scale,
ckpt_info,
ema = None,
params_to_replace = None,
):
def sd_saver(ckpt_file, epoch_no, global_step):
sai_metadata = train_util.get_sai_model_spec(None, args, True, False, False, is_stable_diffusion_ckpt=True)
sdxl_model_util.save_stable_diffusion_checkpoint(
ckpt_file,
text_encoder1,
text_encoder2,
unet,
epoch_no,
global_step,
ckpt_info,
vae,
logit_scale,
sai_metadata,
save_dtype,
)
def diffusers_saver(out_dir):
sdxl_model_util.save_diffusers_checkpoint(
out_dir,
text_encoder1,
text_encoder2,
unet,
src_path,
vae,
use_safetensors=use_safetensors,
save_dtype=save_dtype,
)
if args.enable_ema and not args.ema_save_only_ema_weights and ema:
temp_name = args.output_name
args.output_name = args.output_name + "-non-EMA"
train_util.save_sd_model_on_epoch_end_or_stepwise_common(
args,
on_epoch_end,
accelerator,
save_stable_diffusion_format,
use_safetensors,
epoch,
num_train_epochs,
global_step,
sd_saver,
diffusers_saver,
)
args.output_name = temp_name if temp_name else args.output_name
if args.enable_ema and ema:
with ema.ema_parameters(params_to_replace):
print("Saving EMA:")
train_util.save_sd_model_on_epoch_end_or_stepwise_common(
args,
on_epoch_end,
accelerator,
save_stable_diffusion_format,
use_safetensors,
epoch,
num_train_epochs,
global_step,
sd_saver,
diffusers_saver,
)
def add_sdxl_training_arguments(parser: argparse.ArgumentParser):
parser.add_argument(
"--cache_text_encoder_outputs", action="store_true", help="cache text encoder outputs / text encoderの出力をキャッシュする"
)
parser.add_argument(
"--cache_text_encoder_outputs_to_disk",
action="store_true",
help="cache text encoder outputs to disk / text encoderの出力をディスクにキャッシュする",
)
def verify_sdxl_training_args(args: argparse.Namespace, supportTextEncoderCaching: bool = True):
assert not args.v2, "v2 cannot be enabled in SDXL training / SDXL学習ではv2を有効にすることはできません"
if args.v_parameterization:
print("v_parameterization will be unexpected / SDXL学習ではv_parameterizationは想定外の動作になります")
if args.clip_skip is not None:
print("clip_skip will be unexpected / SDXL学習ではclip_skipは動作しません")
# if args.multires_noise_iterations:
# print(
# f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET}, but noise_offset is disabled due to multires_noise_iterations / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されていますが、multires_noise_iterationsが有効になっているためnoise_offsetは無効になります"
# )
# else:
# if args.noise_offset is None:
# args.noise_offset = DEFAULT_NOISE_OFFSET
# elif args.noise_offset != DEFAULT_NOISE_OFFSET:
# print(
# f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET} / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されています"
# )
# print(f"noise_offset is set to {args.noise_offset} / noise_offsetが{args.noise_offset}に設定されました")
assert (
not hasattr(args, "weighted_captions") or not args.weighted_captions
), "weighted_captions cannot be enabled in SDXL training currently / SDXL学習では今のところweighted_captionsを有効にすることはできません"
if supportTextEncoderCaching:
if args.cache_text_encoder_outputs_to_disk and not args.cache_text_encoder_outputs:
args.cache_text_encoder_outputs = True
print(
"cache_text_encoder_outputs is enabled because cache_text_encoder_outputs_to_disk is enabled / "
+ "cache_text_encoder_outputs_to_diskが有効になっているためcache_text_encoder_outputsが有効になりました"
)
def sample_images(*args, **kwargs):
return train_util.sample_images_common(SdxlStableDiffusionLongPromptWeightingPipeline, *args, **kwargs)
|