yi6B_Vicuna / README.md
lorinma's picture
Update README.md
bcd25f8
|
raw
history blame
2.53 kB
metadata
datasets:
  - anon8231489123/ShareGPT_Vicuna_unfiltered
language:
  - zh
  - en

*TODO:Upload pending, training is finished. still testing. *Update: Having a bit issue with the tokenizer, still figuring things out.

Reproduce Vicuna, but based on yi-6B. The training data I used was ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json.

Hyper parameters:

CUDA_VISIBLE_DEVICES=0,1,2,3,5 torchrun --nproc_per_node 5 ../supervised_finetuning.py \
    --model_type auto \
    --model_name_or_path /data/llm/models/Pretrained/yi-6B/01ai/Yi-6B \
    --tokenizer_name_or_path /data/llm/models/Pretrained/yi-6B/01ai/Yi-6B \
    --train_file_dir ../data/finetune/vicuna/ \
    --per_device_train_batch_size 2\
    --do_train \
    --max_train_samples -1 \
    --num_train_epochs 3 \
    --learning_rate 2e-5 \
    --weight_decay 0. \
    --bf16 \
    --use_peft False \
    --logging_strategy steps \
    --logging_steps 10 \
    --save_strategy epoch \
    --save_total_limit 5 \
    --gradient_accumulation_steps 1 \
    --preprocessing_num_workers 8 \
    --output_dir ../outputs/20240106_yi6B_vicuna \
    --overwrite_output_dir \
    --ddp_timeout 30000 \
    --logging_first_step True \
    --torch_dtype bfloat16 \
    --device_map auto \
    --report_to tensorboard \
    --ddp_find_unused_parameters False \
    --gradient_checkpointing True \
    --cache_dir ./cache \
    --model_max_length 4096 \
    --deepspeed ../deepspeed_zero_stage2_config_no16.json \
    --template_name yi   

The training used 5*A800 for 3 epochs

***** train metrics *****
  epoch                    =                3.0
  train_loss               =             0.3785
  train_runtime            = 1 day, 10:01:13.95
  train_samples            =              93204
  train_samples_per_second =               2.24
  train_steps_per_second   =              0.224

We can see from some preliminary results, the conversation is natural and informative (unsurprisingly), also we observe the unfiltering seems to be working!

Heads up some examples are unsafe and inappropriate, this is entirely for the purpose of testing how un-aligned SFT data affect LLM's final output.

image/png

image/png

image/png