File size: 7,282 Bytes
53a92af
 
 
 
46a120f
53a92af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cde5675
 
53a92af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c9ff49
 
cde5675
53a92af
 
1c9ff49
53a92af
1c9ff49
53a92af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from transformers import PreTrainedModel
from transformers import AutoModel
import torch
from torch.autograd import Function
from configuration_me2bert import ME2BertConfig

class ReverseLayerF(Function):

    @staticmethod
    def forward(ctx, x, alpha):
        ctx.alpha = alpha

        return x.view_as(x)

    @staticmethod
    def backward(ctx, grad_output):
        output = grad_output.neg() * ctx.alpha

        return output, None


class FFClassifier(torch.nn.Module):

    def __init__(self, input_dim, hidden_dim, n_classes, dropout=0.0):
        super(FFClassifier, self).__init__()

        self.model = torch.nn.Sequential(
            torch.nn.Linear(input_dim, hidden_dim),
            torch.nn.BatchNorm1d(hidden_dim), torch.nn.ReLU(True),
            torch.nn.Dropout(dropout), torch.nn.Linear(hidden_dim, n_classes))

    def forward(self, x):
        return self.model(x)


class Encoder(torch.nn.Module):

    def __init__(self, input_dim, hidden_dim, latent_dim):
        super(Encoder, self).__init__()
        self.fc1 = torch.nn.Linear(input_dim, hidden_dim, bias=True)
        self.fc2 = torch.nn.Linear(hidden_dim, latent_dim, bias=True)
        self.prelu = torch.nn.PReLU()

    def forward(self, x):
        x = self.prelu(self.fc1(x))
        x = self.fc2(x)
        return x


class Decoder(torch.nn.Module):
    def __init__(self, latent_dim, hidden_dim, output_dim):
        super(Decoder, self).__init__()
        self.fc1 = torch.nn.Linear(latent_dim, hidden_dim, bias=True)
        self.fc2 = torch.nn.Linear(hidden_dim, output_dim, bias=True)
        self.prelu = torch.nn.PReLU()

    def forward(self, x):
        x = self.prelu(self.fc1(x))
        return self.fc2(x)


class AutoEncoder(torch.nn.Module):
    def __init__(self, input_dim, hidden_dim, latent_dim):
        super(AutoEncoder, self).__init__()
        self.encoder = Encoder(input_dim, hidden_dim, latent_dim)
        self.layer_norm = torch.nn.LayerNorm(latent_dim)
        self.decoder = Decoder(latent_dim, hidden_dim, input_dim)

    def forward(self, x):
        encoded = self.encoder(x)
        encoded = self.layer_norm(encoded)
        decoded = self.decoder(encoded)
        decoded = decoded
        return encoded, decoded


class GatedCombination(torch.nn.Module):
    def __init__(self, embedding_dim):
        super(GatedCombination, self).__init__()
        self.embedding_dim = embedding_dim

        self.forget_gate = torch.nn.Linear(embedding_dim, embedding_dim)
        self.input_gate = torch.nn.Linear(embedding_dim, embedding_dim)
        self.output_gate = torch.nn.Linear(embedding_dim, embedding_dim)

        self.sigmoid = torch.nn.Sigmoid()
        self.tanh = torch.nn.Tanh()

    def forward(self, frozen_output, finetuned_output):
        forget_gate = self.sigmoid(self.forget_gate(frozen_output))
        input_gate = self.sigmoid(self.input_gate(finetuned_output))

        combined = forget_gate * frozen_output + input_gate * finetuned_output

        output_gate = self.sigmoid(self.output_gate(combined))

        gated_output = output_gate * self.tanh(combined)

        return gated_output


class ME2BertModel(PreTrainedModel):
    config_class = ME2BertConfig
    base_model_prefix = "me2bert"
    def __init__(
            self,
            config: ME2BertConfig = None):
        if config is None:
            config = ME2BertConfig()

        super().__init__(config)
        self.n_mf_classes = 5
        self.n_domain_classes = 2
        pretrained_model_name = config.pretrained_model_name
        self.has_gate = config.has_gate
        self.has_trans = config.has_trans
        self.emotion_labels = [0, 0, 0, 0, 0]
        self.feature = AutoModel.from_pretrained(pretrained_model_name)
        self.bert_frozen = AutoModel.from_pretrained(pretrained_model_name)

        for param in self.bert_frozen.parameters():
            param.requires_grad = False

        self.embedding_dim = self.feature.config.hidden_size
        latent_dim = 128
        self.emotion_dim = 5

        self.gated_combination = (
            GatedCombination(embedding_dim=self.embedding_dim)
        )

        self.trans_module = (
            AutoEncoder(self.embedding_dim, 256, latent_dim))

        initial_dim = self.embedding_dim + self.n_domain_classes + self.emotion_dim

        self.mf_classifier = FFClassifier(
            initial_dim, latent_dim, self.n_mf_classes, .0
        )

        self.domain_classifier = FFClassifier(
            self.embedding_dim, latent_dim, self.n_domain_classes,

        )

    def gen_feature_embeddings(self, input_ids, attention_mask):
        feature = self.feature(input_ids=input_ids, attention_mask=attention_mask)
        return feature.last_hidden_state, feature.pooler_output

    def forward(self,
                input_ids,
                attention_mask, return_dict=False):

        _, pooler_output = self.gen_feature_embeddings(
            input_ids, attention_mask)

        with torch.no_grad():
            frozen_output = self.bert_frozen(input_ids=input_ids, attention_mask=attention_mask)

        frozen_output = frozen_output.pooler_output

        device = pooler_output.device
        rec_embeddings = None
        if self.has_trans:
            rec_embeddings = pooler_output
            _, pooler_output = self.trans_module(rec_embeddings)
            if self.has_gate:
                gated_output = self.gated_combination(frozen_output, pooler_output)
            else:
                gated_output = pooler_output
        else:
            gated_output = pooler_output

        domain_labels = torch.zeros(gated_output.shape[0]).long().to(device)
        domain_feature = torch.nn.functional.one_hot(
            domain_labels, num_classes=self.n_domain_classes).squeeze(1)

        emotion_features = None
        if self.emotion_labels is not None:
            if isinstance(self.emotion_labels, list):
                emotion_tensor = torch.tensor(self.emotion_labels, dtype=torch.float32)
                emotion_features = emotion_tensor.repeat(gated_output.shape[0], 1)
            else:
                emotion_features = torch.nn.functional.one_hot(
                    self.emotion_labels.long(), num_classes=self.emotion_dim
                ).squeeze(1)

        if emotion_features is not None:
            emotion_features = emotion_features[:gated_output.shape[0], :]
            class_output = torch.cat((gated_output, domain_feature, emotion_features), dim=1)

        else:
            emotion_features = torch.zeros(gated_output.shape[0], self.emotion_dim).to(device)
            class_output = torch.cat((gated_output, domain_feature, emotion_features), dim=1)

        class_output = torch.sigmoid(self.mf_classifier(class_output))
        if return_dict:
            mft_dimensions = [
                'CH',
                'FC',
                'LB',
                'AS',
                'PD'
            ]

            result_list = []
            for i in range(class_output.shape[0]):
                row_scores = [round(score.item(), 5) for score in class_output[i]]
                row_dict = dict(zip(mft_dimensions, row_scores))
                result_list.append(row_dict)
            return result_list

        return class_output