File size: 2,424 Bytes
4019d5c
9e657c6
 
4019d5c
 
9e657c6
4019d5c
 
9e657c6
4019d5c
 
 
9e657c6
4019d5c
 
 
 
 
9e657c6
 
4019d5c
 
 
 
 
 
9e657c6
4019d5c
 
 
 
 
9e657c6
4019d5c
9e657c6
4019d5c
9e657c6
 
4019d5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
language:
- ru
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Russian
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0 ru
      type: mozilla-foundation/common_voice_11_0
      config: ru
      split: test
      args: ru
    metrics:
    - name: Wer
      type: wer
      value: 12.237466436164343
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Russian

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 ru dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3060
- Wer: 12.2375

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer     |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.0731        | 1.04  | 1000  | 0.2183          | 13.0589 |
| 0.0194        | 3.02  | 2000  | 0.2390          | 12.8027 |
| 0.0067        | 4.06  | 3000  | 0.2524          | 12.5832 |
| 0.0025        | 6.04  | 4000  | 0.2725          | 12.3245 |
| 0.0017        | 8.02  | 5000  | 0.2854          | 12.7046 |
| 0.0009        | 9.06  | 6000  | 0.2915          | 12.5072 |
| 0.0005        | 11.04 | 7000  | 0.3006          | 12.2473 |
| 0.0004        | 13.02 | 8000  | 0.3060          | 12.2375 |
| 0.0003        | 14.06 | 9000  | 0.3129          | 12.2963 |
| 0.0003        | 16.04 | 10000 | 0.3157          | 12.2988 |


### Framework versions

- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.11.1.dev0
- Tokenizers 0.13.2